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Abstract 

Many of the baryons in the Universe are dark and at least some of 
the dark baryons could be in the form of compact objects. Such objects 
could be in various locations - galactic discs, galactic halos, clusters 
of galaxies or intergalactic space - and each of these is associated 
with a dark matter problem. For each site we consider the various 
dynamical constraints which can be placed on the fraction of the dark 
matter in compact objects of different mass. Small compact objects in 
the Galaxy are constrained by upper limits on their encounter rate with 
the Earth and Solar System since they would resemble meteors or 
comets. Larger objects are constrained by the disruptive or disturbing 
effects they would have on various astronomical systems. For disc 
objects, the most interesting constraints come from the disruption of 
binary stars or open star clusters. For halo objects, they come from the 
disruption of globular clusters, the heating of the Galactic disc and 
their accumulation in the Galactic nucleus as a result of dynamical 
friction. For cluster objects, they come from the tidal distortion and 
disruption of galaxies. For intergalactic objects, they come from the 
upper limit on the peculiar motions induced’ in galaxies. We also apply 
these limits to the situation in which the compact objects are clusters 
of smaller objects. 
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1. Introduction 

The aim of this paper is to bring together all the dynamical 
constraints on the mass of compact objects - or clusters of compact 
objects - residing in various astronomical loca6ons associated with 
dark matter. Such compact objects would probably have to be baryonic, 
in the sense that they derive from ordinary atomic matter rather than 
exotic relics of the Big Bang. We therefore start by reviewing the 
evidence that some of the baryons in the Universe are dark and the 
likelihood that they are in the form of compact objects. We also 
discuss where the objects could be located, how they might have 
originated and what form they might take. The other possibility is that 
the compact objects are black holes which were formed in the early 
Universe. Although such “primordial” black holes should not be regarded 
as baryonic, they have very similar dynamical consequences, so much of 
our discussion will also apply to them. 

1.1 Evidence for Baryonic Dark Matter 

Evidence for dark matter has been claimed in four different 
contexts (Carr 1994): There may be local dark matter in the Galactic 
disc with a mass comparable to that in visible form (Mdarkw Mvis). 
There may be dark matter in the halo of our own and other galaxies 
with a mass which depends upon the (uncertain) halo radius Rh and is of 
order Mdark” I O Mvis( Rh/I OOkpc). There may be dark matter associated 
with clusters of galaxies (Moarkwl OMvis). ln the inflationary scenario, 
there. may also “be smoothly ‘distributed background dark matter, 
required in order that the total cosmological density have the critical 
value which separates ever-expanding models from recollapsing ones 
(MdarkNl OOMvi,). The form of the dark matter need not be the same in all 
these contexts: some of it may be non-baryonic (eg. in elementary 
particle relics from the early Universe) but some of it may also be 
baryonic. 

The main argument for both baryonic and non-baryonic dark 
matter comes from Big Bang nucleosynthesis. This is because the 
success of the standard picture in explaining the primordial light 
element abundances only applies if the baryon density parameter fib 
lies in the range O.O07h-2 to O.O22h-2, where h is the Hubble parameter 

in units of 100 km s-1 Mpc- 1 (Copi et al. 1995). The upper limit is well 
below 1, which suggests that no baryonic candidate could provide the 
critical density required in the inflationary scenario. This conclusion 
also applies if one invokes inhomogeneous nucleosynthesis since one 



requires Qb<O.Ogh-2 even in this case (Mathews et al. 1993). The 
standard scenario therefore assumes that the total density parameter 
is 1, with only the fraction Qb being baryonic. On the other hand, the 
lower limit to S2 b almost certainly exceeds the density of visible 

baryons Rv. A careful inventory by Persic & Salucci (1992) shows that 

the contributions to Qv are 0.0007 from spirals, 0.0015 from 
ellipticals and spheroidals, O.O0035h-1.5 from hot gas within an Abell 
radius for rich clusters, and O.O0026h-1-5 from hot gas out to a 
virialization radius in groups and poor clusters. This gives a total of 
(2.2+0.6h-‘-5)x1 O-3, although neutral hydrogen in galaxies gives 

another contribution of 0.2x10-3h-1 (Rao & Briggs 1993). The fraction 
of baryons in dark form must therefore be in the range 60% to 95% for 
0.5<h<l. Dar (1995) gets a larger value, R,=(4.5+0.9h-l-5) x10-3, but 

this is still below Qb. Thus it seems that one needs both non-baryonic 
and baryonic dark matter. 

Which of the dark matter problems could be baryonic? Baryons 
would certainly suffice to explain the dark matter in galactic discs: 
even if all discs have the dark fraction envisaged for our Galaxy, this 
only corresponds to R d=O.OOl , well below the value required by 
cosmological nucleosynthesis. On the other hand, the cluster dark 
matter has a density &= 0.1-0.2 and this cannot be baryonic unless one 
invokes inhomogeneous nucleosynthesis. We have seen that even 
inhomogeneous nucleosynthesis would not permit the background dark 
matter to be baryonic. The more intriguing question is whether dark 
baryons could suffice to explain galactic halos. If the Milky Way is 
typical, the density associated with halos would be Q h=O.O2h- t 

(Rh/7Okpc), so the nucleosynthesis upper limit on nb implies that aI/ 
the dark matter in halos could be baryonic only for Rh < 70h-1 kpc. For 
our own halo the minimum radius consistent with rotation curve 
measurements, the local escape speed, the kinematics of globular 
clusters and the dynamics of the Local Group is 70kpc (Fich & Tremaine 
1991). More generally, gravitational lensing of background galaxies by 

foreground ones suggest that Rh is at least 30h-lkpc (Brainerd et al. 
1996). Both these limits would just be compatible with baryonic halos. 
However, observations of the satellites of other galaxies (Zaritsky et 
al. 1993, Zaritsky & White 1994) suggest that Rh is at least 200 kpc, 
which would not be. Generally the baryonic fraction could be at most 
(Rh/70 h-‘kpc)-’ . 

Although the standard scenario assumes Sz, CC izb ccl, two 
problems have recently arisen with this point of view. Firstly, X-ray 

data suggest that the ratio of visible baryon mass (in stars and hot gas) 



to total mass in clusters is anomalously high compared to the mean 
cosmic ratio implied by Big Bang nucleosythesis. For example, ROSAT 
observations of Coma suggest that the baryon fraction within the 
central 3 Mpc is about 25%, which is a least 5 times the cosmological 
ratio (White et al. 1993), and there is now evidence that this is a very 
widspread phenomenon (White & Fabian 1995). It is hard to understand 
how the extra baryon concentration would come about, since 
dissipation should be unimportant on these scales. Unless one invokes a 
cosmological constant, this suggests that either the cosmological 
density is well below the critical value or the baryon density is higher 
than allowed by the homogeneous nucleosynthesis scenario. The latter 
possibility would stengthen the case for baryonic dark matter since the 
gap between Qv and Rb would be increased. 

Secondly, recent measurements of the deuterium abundance in 
quasar absorption systems suggest a primordial value of around 2x10-4 
and this is an order of magnitude larger than is usually assumed 
(Songaila et al. 1994, Carswell et al. 1994, Rugers & Hogan 1996). In 
this case, the upper bound on Rb from nucleosynthesis is reduced to 

O.O05h-2, which is only marginally larger than the Persic-Salucci 
estimate of 52 v, so the need for dark baryons may be removed 
altogether. However, the evidence for such a high deuterium abundance 
is disputed (Tytler et al. 1996). Indeed the most recent observations 
suggest that the deuterium line in the first high-abundance cloud may 
have been misidentified (Tytler at al. 1997). In any case, the resolution 
of this issue is crucial to the status of baryonic dark matter. 

1.2 Location and Origin of Dark Baryons 

Although this paper focusses on the possibility that the dark 
baryons are in compact objects, it must be stressed that this is 

not a necessary consequence of the condition Rv << !&. There are at 
least five possible locations for the dark baryons, as summarized in 
Table (I), only some of which involve compact objects. Indeed some 
dark baryons must reside in each of these, so the crucial question is 
where most of them are. On the other hand, baryonic objects could still 
have interesting dynamical consequences even if their contribution to 
the dark matter density is small. 

* Hot intergalactic Medium. The discrepancy between fib and Rv could 

be resolved if the missing baryons were in a hot intergalactic medium 
but, in this case, the temperature T would need to be finely tuned. Since 
the Gunn-Peterson test requires the neutral hydrogen density to be 
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R(HI)<lO-sh-1 out to a redshift of 3 (Steidel & Sargent 1988) and since 
the COBE limit on the Compton distortion of the microwave background 
(yc3xl O-5) requires the ionized hydrogen density to be 
R(HII)<O.1(T/107K)-~h-~ at that redshift (Mather et al. 1994), the 

temperature must lie in the range 104-I 06K if RjGM-Qb. Positive 

evidence for intergalactic gas may come from the recent detection of 
helium absorption (Jacobsen et al. 1993, Davidsen et al. 1996). 

l Lyman-cc Clouds. Although the density parameter associated with 

“damped” clouds is probably around 0.003 h-2 (Lantetta et al. 199 1) , 
comparable to the density in galaxies and therefore consistent with the 
idea that these are protogalactic discs, the density associated with 
undamped systems is unknown and - depending on the ionized fraction - 
could be much larger (Rees 1986). Indeed simulations suggest that, in 
the CDM scenario, the undamped systems are distributed on filaments 
and sheets at a redshift of 2 with a baryon density comparable to the 
nucleosynthesis bound (Weinberg et al. 1996). In this case, must the 
intergalactic medium must be in the form of Lyman-a clouds. However, 
by the present epoch the undamped systems could still have fragmented 
into stars, so this does not exclude the other options discussed below. 

l Galactic Discs. At least some dark baryons must be in the remnants 
of Population I stars (i.e. in galactic discs). For our own galaxy Bahcall 
et al. (1992) estimate the dark fraction as 60%, although this has been 
disputed by Kuijken & Gilmore (1989, 1991). Flynn & Fuchs (1995) get 
an upper limit of 10%. Even if one accepts the Bahcall et al. estimate, 
the associated cosmological density is much less than Rv, so most of 
the dark baryons must be elsewhere. 

l intergalactic Objects. The usual estimate of Rv does not include the 
contribution from an intergalactic population of dark objects, such as 
dwarf galaxies (Bristow & Phillipps 1994, Loveday et al. 1996) or low 
surface brightness galaxies (McCaugh 1994, 1997). Indeed it has 
recently been claimed that such galaxies may provide all of the missing 
baryons (Impey & Bothun 1997). This paper emphasizes the possibility 
that there could also be baryons in the form of “Dark Intergalactic 
Compact Objects” (DICOs): either the remnants of a first generation of 
pregalactic stars or primordial black holes which formed before 
cosmological nucleosynthesis. Only the latter could have the critical 
density required by inflation. Otherwise most of the intergalactic dark 
matter would have to be in the form of “Weakly Interacting Massive 
Particles” or “WIMPS”. 



l Galactic Halos. We have seen that galactic halos could contain all the 
dark baryons if the typical halo radius Rh is less than 70h-1 kpc. In this 
case, one might consider three possible forms for-the dark baryons: hot 
gas, the remnants of pregalactic or protogalactic stars, or cold 
molecular clouds. The first possibility would appear to be inconsistent 
with X-ray observations, since the gas would need to have the virial 
temperature of 106K, although there may be evidence for some gas with 
this temperature (Suto et al. 1996). The second possibility corresponds 
to the “Massive Compact Halo Object” or “MACHO” scenario and has 
attracted considerable interest recently as a result of the microlensing 
detections (Alcock et al. 1993, 1996; Auborg et al. 1993). The third 
possibility requires that the molecular clouds be distributed in a disk 
(Pfenniger et al. 1994); although such clouds should not really be 
classified as compact objects, they would have many of the dynamical 
consequences considered here. 

Both the MACHO and DICO scenarios require the existence of what 
are termed “Population III” stars; this is to distinguish them from the 
“Population I” and “Population II” stars which reside in the discs and 
spheroids of galaxies. Although there are no observations which 
unambiguously require that most of the baryons in the Universe were 
processed through Pdpulation III stars, there are theoretical reasons 
for anticipating their formation. This is because the existence of 
galaxies and clusters of galaxies implies that there must, have been 
density fluctuations in the early Universe and, in some scenarios, 
depending on the nature of the fluctuations and the nature of the 
dominant dark matter, these fluctuations would also give rise to a 
population of bound clouds in the period betwen decoupling and galaxy 
formation (White & Rees 1978, Carr et al. 1984, Ashman & Carr 1991). 

Table (1): Possible locations of dark baryons and formation epochsoof compact objects 

- 
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The first bound clouds could face various possible fates (Carr 
1994). They might just turn into ordinary stars and form objects like 
globular clusters. On the other hand, the conditions of star formation 
could have been very different at early times and-several alternatives 
have been suggested. Some people propose that the first stars could 
have been much smaller than at present (Palla et al. 1983, Yoshii & Saio 
1986, Ashman & Carr 1991), others that they could have been much 
larger (Silk 1977, Kashlinsky & Rees 1983, Tohline 1980), others that 
they may have collapsed directly to supermassive black holes (Gnedin & 
Ostriker 1992, Loeb 1993). In the baryon-dominated “isocurvature” 
scenario (Peebles 1987), with highly non-linear fluctuations on small 
scales, the first clouds may even have collapsed to black holes before 
decoupling (Hogan 1993). In this case, the baryon density could be 
higher than the usual nucleosynthesis value because the 
nucleosynthetic products in the high density regions would be locked up 
inside remnants (Gnedin et al., 1995). One certainly needs the f i rs t 
clouds to fragment into stars which are very different from the ones 
forming today if they are to produce a lot of dark matter. 

Although intergalactic dark objects would have to be pregalactic 
(or primordial) in origin, there is no necessity for halo objects to be 
pregalactic since even clouds which bind before galaxies need not 
fragment until much later. They may just remain as Lyman-a clouds 
which undergo no further evolution until the epoch of galaxy formation, 
as indicated by the studies of Weinberg et al. (1996). The epoch of 
Population III formation will be very important for the relative 
distribution of baryonic and non-baryonic dark matter, especially if the 
non-baryonic dark matter is “cold” so that it can cluster in galactic 
halos. In this case, if the Population III stars form before galaxies, one 
might expect their remnants to be distributed throughout the Universe, 
with the ratio of the non-baryonic and baryonic densities being the 
same everywhere and of order 10. If they form at the same time as 
galaxies, perhaps in the first phase of protogalactic collapse, one 
would expect the remnants to be confined to halos and clusters. In this 
case, their contribution to the halo density could be larger since the 
baryons would probably dissipate and become more concentrated. 
However, angular momentum considerations require that halos must be 
essentially in place by the time galactic discs form, so there must not 
be too much dissipation (Fall & Efstathiou 1981). Compact objects in 
galactic discs presumably form after the discs themselves and must 
therefore be of galactic origin. The various possible epochs for compact 
object formation are indicated in Table (1). 



I .3 Nature of Compact Objects 

We have seen that dark objects of baryonic or primordial origin 
could reside in galactic discs, galactic halos., or the background 
Universe. In this paper the term “compact object” will used to cover all 
these cases. There could also be compact objects in clusters of 
galaxies but these are unlikely to be a separate population; probably 
they would have to comprise either accreted intergalactic objects or 
objects which derived from disrupted halos. We now discuss the 
possible form of these compact objects. The first possibility is the 
most speculative and assumes that the objects form in the first few 
moments of the Big Bang. The other possibilities all correspond to 
variants of the “Population Ill” scenario. 

l Primordial Black Holes (PBHs). Black holes may have formed in the 
early Universe, either from initial inhomogeneities or at some sort of 
cosmological phase transition (Carr 1996). Those forming at time t 
after the Big Bang would have a mass of order the horizon mass at that 

epoch -lOS(t/s) Me. Since there could not have been large-amplitude 
horizon-scale inhomogeneities at the epoch of cosmological 
nucleosynthesis (t-Is), PBHs forming via the first mechanism are 
unlikely to be larger than 105M e. On the other hand, since there is no 

phase transition after the quark-hadron era at IO-%, those forming via 
the second are unlikely to be larger than ~MQ. In fact, the possibility 
that PBHs may have formed at the quark-hadron transition (Crawford & 
Schramm 1982) has attracted considerable attention recently (Schmid 
1996, Jedamzik 1996) because they would naturally have a mass 
comparable to that required by the microlensing results. However, the 
PBH scenario has one disadvantage: because the ratio of PBH to 
radiation density increases as the cosmological scale factor, the 
fraction of the Universe going into PBHs at time t could only have been 

1 o-6(t/s)l/2 even if their density today is close to critical (Carr 
1975). It therefore requires fine-tuning of the collapse fraction to 
explain any of the dark matter problems. In this respect the Population 
III explanation is more attractive since one expects a fraction of order 
unity of the Universe’s baryonic mass to end up in the dark objects. 

l Low Mass Objects (LMOs). This term will be used to cover all objects 
below 0.8 Me which have either not completed their nuclear burning 
phase or not passed through one at all. Stars in the range 0.08-0.8 M. 
are still on the main-sequence. Those below below 0.1 Me are termed 
M-dwarfs; although they are very dim, source count constraints already 
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exclude them from providing all of the disc or halo dark matter (Bahcall 
et al. 1996). Objects in the range 0.001-0.08 MQ would never burn 
hydrogen, although those above 0.01 Me could still burn deuterium, and 
are termed brown dwarfs (60s). They represent a balance between 
gravity and degeneracy pressure. Objects below 0.001 Me,, being held 
together by intermolecular rather than gravitational forces, have 
atomic density and are here termed “snowballs”. 

* Intermediate Mass Objects (/MO@. This term will be used to describe 
stars between 0.8 Me and about 100 MQ which have already completed 
their evolution. Those in the range 0.8-4 Me would leave white dwarf 
remnants, while those between 8 MQ and some mass MBH would leave 
neutron star remnants. In either case, the remnants would eventually 
cool and become dark. Stars in the mass range 4-8 Mo may be disrupted 
entirely during their carbon-burning stage but this is not certain. Stars 
larger than MBH would evolve to black holes; estimates of MBH range 
from 25 MQ to 50 Me (Maeder 1992). Both neutron stars and stellar black 
holes would appear to be implausible dark matter candidates because 
their precursors would produce too much enrichment (Carr et al. 1984). 
White dwarfs would therefore appear to be the most conservative IMO 
candidate (Ryu et al.1993), especially in view of the results from the 
microlensing experiments. However, this scenario also has problems 
since it requires galaxies to go through a very bright initial phase and 
this may be inconsistent with galactic number counts (Charlot & Silk 
1996). It also requires the initial mass function to be restricted to 2-8 
Me to avoid excessive background light and heavy element production. 

* Very Massive Objects (VMOs). Stars with initial mass in the range 
above lOOMe would experience the pair-instability during their oxygen- 
burning phase (Fowler & Hoyle 1964). This would lead to disruption 
below some initial mass Mc=200M e but complete collapse above it 
(Woosley & Weaver 1982, Ober et al. 1983, Bond et al. 1984). VMO black 
holes may therefore be more plausible dark matter candidates than 
ordinary stellar black holes. However, stars with an initial mass above 
1 OOMQ are radiation-dominated and therefore unstable to pulsations. 
This leads to considerable mass loss during hydrogen-burning, although 
the pulsations are unlikely to be completely disruptive. The main 
problem with the VMO scenario is that the background light generated 
by the very luminous precursors exceeds the observational upper limits 
for most parameters (Bond et al. 1991, Wright et al. 1994). It must be 
stressed that there is little evidence for VMOs forming at the present 
epoch, so they are invoked specifically to provide dark matter. 



*Supermassive Objects (SMOs). Metal-free stars larger than 105M Q 
would collapse directly to black holes due to general relativistic 
instabilities before any nuclear burning (Fowler, 1966). They would 
therefore have no nucleosynthetic consequences, although they could 
explode in some mass range above 10sM Q if they had non-zero 
metallicity (Fuller et al. 1986). SMOs would also generate very little 
radiation, emitting only 1 O-1 1 of their rest-mass energy in photons. It 
should be stressed that it is very difficult for supermassive objects to 
collapse directly to black holes, at least at the present epoch. They are 
much more likely to fragment into smaller objects, with black holes 
only forming subsequently in the core as a result of relaxation. This 
means that only a small fraction of the mass of the Universe is likely 
to be in SMOs. For example, while there is certainly good evidence that 
SMO holes reside in galactic nuclei, perhaps with masses as large as 
1 OsMe, these would only have a negligible cosmological density. Huge 
intergalactic objects, if they exist, are therefore unlikely to be single 
compact objects like black holes. 

l Dark Clusters. In many scenarios one expects the Population Ill stars 
to form in clumps of about 106M, (Carr & Lacey 1986). This mass arises 
naturally as the mass of the first bound clouds in either a baryon- 
dominated Universe with isothermal fluctuations or a cold dark matter 
Universe with adiabatic fluctuations (Carr & Rees 1984). It also arises 
if the first clouds form protogalacticalfy through some type of two- 
phase instability (Fall & Rees 1985). However, one could also envisage 
scenarios in which the cluster mass is well below 106M, (Ashman 
1990, Kerins & Carr 1994, Wasserman & Salpeter 1994, Moore & Silk 
1995, De Paolis et al. 1995). Provided the clusters maintain their 
integrity, it makes very little difference to their dynamical effects 
whether they consist of brown dwarfs, white dwarfs, black holes, or 
even single supermassive holes. However, in many circumstances, one 
would not expect the clusters to maintain their integrity, since they 
would be disrupted by collisions or Galactic tidal effects and this 
places constraints on the mass and radius of any surviving clusters. For 
the reasons discussed above, supermassive dark objects are also more 
likely to be dark clusters (eg. dark galaxies) than single black holes. 

All sorts of constraints can be placed on the density of compact 
objects in different locations (disc, halo, cluster, background) and 
these are reviewed by Carr (1994). In this paper we will focus 
exclusively on constraints associated with dynamical effects. Some of 



these effects have been discussed before - either in the published 
literature or in unpublished form (Sakellariadou 1984) - and all of them 
could be treated in more detail than we do here. However, we believe 
this is the first time the constraints have all been_ brought together and 
a more careful treatment would preclude their being covered in a single 
paper. For the purposes of this paper, the mass of the compact object in 
each location will be taken to be arbitrary, even though non-dynamical 
constraints may already exclude some ranges. Our conclusions will also 
be largely independent of the nature of the compact objects. Although 
some of our calculations assume that they are black holes, since black 
holes represent the only stable candidate in the high mass range, we 
have seen that the compact objects could also be clusters of smaller 
objects. The results are summarized in Figure (7). A preliminary 
version of this figure also appeared in Carr (1994) but without 
derivation. 

We discuss the constraints in order of increasing mass. Very I ow 
mass objects would be numerous enough to encounter the Earth 
occasionally and the associated constraints are discussed in $2. Many 
of the dynamical limits are associated with the destruction of star 
clusters or galaxies by compact objects. 93 presents a general 
discussion of this problem and the results are then applied in various 
astronomical contexts in $4. Dynamical friction limits are covered in 
95 and disc heating limits in 96. The most plausible dark matter 
candidates are probably too small to have interesting dynamical 
effects if smoothly distributed. We therefore focus on the dark cluster 
scenario in $7, concluding that the mass and radius of the clusters 
must be very tightly constrained. The dynamical consequences of huge 
intergalactic dark objects is discussed in 98. We bring all the Ii m i ts 
together and draw some general conclusions in 39. 
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2. Direct Encounter Constraints 

Compact objects smaller than Jupiter - here termed “snowballs” - 
would have none of the disruptive effects on astronomical systems 
discussed later. However, if there were a large population of such 
objects in the disc or halo of the Galaxy, one would expect some of 
them to enter the solar system or impact the Earth occasionally and 
this would have observable consequences. Objects in the mass range 

1 O-6g<M< 1079 would resemble meteorites, those with 1015g<M< 1022g 
would resemble comets, and those in the intermediate mass range 
would leave impact craters on Earth. Upper limits on the frequency of 
meteors, comets and the number of impact craters therefore provide 
constraints on compact objects too small to be eliminated by any other 
type of observation. 

Of course, primordial snowballs would be very different from 
conventional comets and meteorites in terms of their composition. 
They would probably be composed of pure hydrogen, since no primordial 
helium would be expected to condense (Phinney 1995) and they would 
contain no metals. However, this would be irrelevant for the encounter 
effects discussed here. The prime difference in this context would be 
the larger velocities expected for dark matter snowballs since this 
would make their effects more pronounced. Hills (1986) has studied the 
encounter limits in detail and we summarize and update his results 
here. We express the limits as constraints on the fraction of the disc 
and halo dark matter in objects of mass M and summarize them in 
Figure (1). It should be stressed that non-dynamical effects may 
exclude some of the mass ranges considered here. For example, within 

the age of the Universe, compact objects smaller than 10229 might be 
evaporated by the microwave background (Hegyi & Olive 1983, Phinney 

1985) and those smaller than lO*6g might be evaporated by their own 

heat (De Rujula et al. 1992). Objects above 10269 may also be excluded 
by microlensing limits (Auborg et al. 1995). However, these arguments 
are not definitive - the first two have been criticized by White (1996) 
and the third is based on fairly limited data - so it is useful to obtain 
independent dynamical constraints. 

In discussing the encounter constraints, one first needs to 
determine the average speed <V> of the objects relative to the Earth. 
For objects in the Galactic disc one expects 

<V>=(Vd2+Ve2+Ve2+Ve2)1/2, where Ve=42kms-1 is the solar escape 

velocity at lAU, Ve=3Okms-1 is the orbital velocity of the Earth, 

Ve=ll kms-1 is the escape velocity from the Earth, and Vd is the 3- 

dimensional velocity dispersion within the disc. <V> is an average 



speed over periods exceeding a year, so that seasonal effects 
associated with Earth’s motion around the Sun are eliminated. The value 
of Vd is problematic since the velocity dispersion of disc stars depends 

upon their age (see 96). Hills took Vd=30kms-? but here we take 

Vd-GOkms-1 since this is probably more appropriate for older objects. 

This gives <V>=80kms-1, compared to an average speed of 40kmslfor 

Solar System objects. For halo objects one expects <V>=(Vh2+Vg2)1/2, 

where Vh is the 3-dimensional halo velocity dispersion, Vg=220kms-1 
is the velocity of the Sun around the Galactic centre, and the other 
velocity components are neglected in this case. For a spheroidal halo, 

Vh=GVg=270kms-1 and this gives <V>=350kms-1. For comparison, 

Hills took Vg-25Okms1 and Vh-200kms1, corresponding to 

4>=320kms -1. Of course, there will be considerable variation in the 
encounter speed about these average values - partly due to the 
direction of the object’s motion relative to the Earth’s orbit and partly 
due to the (presumably Maxwellian) distribution in the pre-encounter 
velocity. 

To calculate the rate at which objects hit the Earth, one must 
allow for the gravitational focussing of the Sun. This increases the flux 

at the orbital radius of the Earth by a factor [l+(Ve/Vd)2]=1.5 for disc 

objects or [l+(Ve/Vh)2]=1.02 for halo objects. The gravitational 
focussing effect of the Earth can be neglected, so the effective cross- 

section for encounters is just lrR@ 2. The mass flux on Earth is then 

dM/dt = {I .5,ljxR~2f(M)pV* = {5x109,9x108} f(M) g y-‘{disc, halo} (2.1) 

where V*=[<V> 2-Ve2]‘/2=<V> is the average pre-encounter velocity, 

f(M) is the fraction of the dark matter in objects of mass M and p is the 
dark matter density. We have taken the local halo and disc densities to 

be 0.01 Mepc-3 and O.l5Mepc-3, respectively, the latter being based on 
the estimate of Bahcall et al. (1992). This compares to the smaller 

values of 0.008Mopc3 and OJMepc-3 assumed by Hills. Although the 
local density of the halo objects is only 7% that of the disc objects, 
their mass flux is 18% because of their larger velocities. 

Observations imply that meteors with absolute magnitude down 
to Mv=15 (defined as the apparent magnitude at 100 km) have a flux of 

8x106 s-l (Allen 1973). The mass is related to Mv and V by 



log Wg) = 2.5-l .7log(V/kms-I)-0.4Mv W’g) e*) 

(Opik 1958), so this corresponds to masses exceeding lo-79 or lo-8g 
for objects with velocitiesappropriate for the disc -or halo respectively. 
Halo objects are brighter for a given mass because of their larger 
velociti&However, at most 1% of these meteors could be of interstellar 
origin (i.e. on hyperbolic orbits) and at most 0.01% could be of halo 
origin (Jones & Sarma 1985). Allowing for these factors, eqn (2.1) 
gives a limit 

5x1 O-5( M/l O-79) (MB 1 O-7g) (disc) 

f(M) < (2.3) 
3x1 O-7( M/l 0-8g) (M>l O-69) (halo) 

The limit on the meteor flux down to Mv-6, corresponding to masses 

exceeding 1 O-39 for disc objects and M=lO-4g for halo objects, is 460 

s-l (Allen 1973) and the same argument as above then implies 

3x1 O-5( M/l O-39) (M>l O-39) (disc) 

f(M) < (2.4) 
2x1 O-7( M/l O-49) (M>i O-49) (halo) 

For given M this is stronger than limit (2.3) but it does not extend to 
such low values. Meteors with magnitude down to Mv=-5, corresponding 
to masses exceeding 10 g for disc objects and 1 g for halo objects, 
would produce fireballs and the fact that no fireballs of interstellar 
origin were observed in a large-area survey over an “effective” (i.e. 
scaled to the full area of the Earth) period of 30 hours led Hills to jnfer 
a limit 

5x1 O-7(Mll Og) (M>l Og) (disc) 
f(M) < (2.5) 

3x10-7(M/lg) (Ma) (halo) 

He anticipated that satellite observations of the Earth or Jupiter could 

strengthen these limits by a factor of 103 or 1 05, respectively. 
Hills also considered the limits which come from considering 

impact craters on Earth. The time between impacts is known to be 1.6~ 
for M-l 089, 2.5x1 03y for M-10129 and 2x106~ for M-1016g (Allen 
1973)‘ these masses being appropriate for objects in the disc. For halo 
objects, the corresponding masses would be smaller by 20 (scaling as 



V2) because their higher velocities would result in larger impact 
craters. One can infer the following limits: 

i 

0.01 (M/l 08g) (M-l 08g) 

f(M) < 0.08( M/l 0’ 29) (M-110’2g) (disc) 

(M/10’6g) (M-10’69) 

(2.6) 

i 

O.O03(M/5x106g) (M-5xl06g) 

f(M) < O.O2(M/5xlO’ Og) (M-5xiO’Og) (halo) (2.7) 

0.3(M/5x10’49) (M-5~10’~g) 

In Figure (1) we have interpolated between the values of M to obtain a 
more extended limit. 

For M>1015g (disc) or M>1014g (halo), one also gets a limit from 
the fact that no interstellar comet has been observed in telescopic 
surveys (such as Messier’s) over the last 300 y. Using IAU rather Re for 
the relevant cross-section in eqn (2.1) then gives a constraint 

1x10-6(M/10’5g) (M>l 0159) (disc) 

fW) < (24 
6x1 O-7( M/l 0’ 49) (M>lOj 49) (halo) 

so only objects larger than 1021 g (disc) or 2xlO2Og (halo) could 
provide all the dark matter. Naked eye observations would have sufficed 

to detect M>1017g disc objects or M>1016g halo objects (which are as 
bright as Halley) out to several AU over the last 400~ and this 

increases the lower limit to 5x1021 g (disc) or 1021 g (halo). This 
assumes that pure hydrogen snowballs produce tails when they 
approach the Sun, as seems likely. 

Finally we must consider the possibility that snowballs destroy 
each other through collisions within the age of the Universe, as first 
discussed by Hegyi & Olive (1983). Since the collisional cross-section 

for snowballs is just their geometrical cross-section (&), the 
timescale on which they collide is 

tcoll = 4rpo/(3fpV) = (16/9+3p02/3M ‘/3/(fpV) cw 



where po is the internal density of the snowballs (i.e. solid hydrogen 

density m 0.1 g cm-3) and the appropriate velocity is Vh=270kms-1 for 

halo objects and Vd-6Okms -1 for disc objects. In both cases therefore 
snowballs can survive for the age of the Galaxy tg if 

lxlO6(tg/l 010y)3g (disc) 

f c (M/Mmin)l’3 , Mmin = (2.10) 

3xlOb(tg/l 010y)3g (halo) 

Only snowballs larger than Mmin could comprise all the dark matter. 
Where it overlaps, this limit is considerably weaker than the meteor 
and fireball limits but it extends to lower values of M. For smoothly 

distributed intergalactic snowballs, p=2xl O-29fh2gcm-6 (where f is 
the fraction of the critical density in the snowballs) and we assume 

V-l 03kms-1 (although this value is rather uncertain). At earlier epochs 

Q scales with redshift as (1 +z)3 and t as (1 +z)-6’2, so we obtain a 
limit 

f < (M/Mmin)l’3 , Mmin = 4x10-6(to/l OlOy)3(1 +Z)“2h6g (2.11) 

(The evolution of V is neglected because it is model-dependent.) Limit 
(2.11) is very sensitive to z but, provided the snowballs form after 

z=lO6, it is always weaker than the limit (2.10). 
It must be stressed that all the terrestrial encounter limits 

presume that the snowballs are not sublimated by the heat of the Sun 
when they enter the inner solar system. However, White (1996) argues 
that this may not apply for snowballs with radius less than 1 km (or 

MC 1014g), in which case only the collisional limits (2.10) and (2.11) 
pertain. In this context, it is important to establish whether limit (2.5) 
can be extended to the outer planets (like Jupiter) since the 
sublimation radius scales as the square root of the distance from the 
Sun. One must also be cautious in applying the above limits to 
primordial black holes, the only other low mass dark matter candidate. 
In this case, one can still use eqn (2.1) to calculate the encounter rate 
but PBHs striking the Earth or its atmosphere would have very different 
signatures from comets or meteors. Small mass PBHs would pass 
straight through a solid body, merely leaving small accretion cylinders, 
although larger ones could have more dramatic effects. A full 
discussion of this goes beyond the scope of the present paper. 



3. The Disruption of Clusters 

In this section we will study the tidal disruption of a star cluster 
by a passing compact object. The tidal force of the_ object will increase 
the velocity dispersion within the cluster, leading to an increase in its 
total energy. The cluster will therefore expand and eventually become 
unbound. Depending on the circumstances, either a single encounter or a 
succession of encounters will be required for its disruption. Various 
people have analysed this process in particular astronomical contexts. 
For example, Spitzer (1958) has studied the disruption of open star 
clusters by passing interstellar clouds. Carr (1978), Sakellariadou 
(1984), Wieien (1987, 1988, 1991), Ostriker et al. (1989) and Moore 
(1993) have studied the disruption of globular clusters by giant black 
holes. Carr (1978) and Wielen (1985) have studied the disruption o f 
open clusters by giant molecular clouds and black holes. Bahcall et al. 
(1985) have studied the disruption of binary systems by objects in the 
Galactic disc. Gerhard & Fall (1983) have studied the tidal interactions 
of spiral galaxies in clusters. 

For present purposes we need a very general analysis which can 
be used in all of these situations. We need to go beyond the standard 
impulse approximation, in which the disrupting objects are assumed to 
be moving sufficiently fast that they pass the cluster in a time less 
than its internal dynamical timescale and move on nearly straight 
orbits (Spitzer 1958). We also need to allow for the effects o f 
encounters in which the impact .parameter is either more or less than 
the radius of the cluster. The full details of the analysis are produced 
elsewhere (Carr & Sakellariadou 1997). Here and in Appendix A we 
merely summarize the key results and then apply them in $4 to 
studying the disruption of binaries and open clusters by disc compact 
objects, the disruption of globular clusters by halo compact objects 
and the disruption of galaxies by dark objects in clusters. For 
specificness we assume that the compact objects are black holes. 
However, nothing depends too crucially on this; we only require that the 
objects be much smaller than the clusters they are disrupting. 

For simplicity we assume that the cluster is spherically 
symmetric with its stars all having the same mass and an isotropic 
velocity distribution. The density distribution within the cluster w i II 
depend upon the context but, for a cluster of mass Mc and radius Rc, its 

total energy and the 3-dimensional stellar velocity dispersion w i I I 
always have the form 

(3.1) 



where the value of the constant y depends upon the density profile. To 

keep our analysis as general as possible, we will usually leave y 
unspecified. However, in later applications we -will focus on three 
particular cases. We will model open clusters as homogenous spheres, 
in which case there is a sharp cut-off at radius Rc and y=O.3. We will 

model globular clusters as Plummer spheres, in which case Rc is 

interpreted as the half-mass radius (since the sphere extends to 
infinity) and y=O.15. We will model galaxies as isotherm& spheres with 

a cut-off at some radius Rc, in which case y=3/4. (See Appendix A). 
If the black hole has mass M and, at closest approach, distance p 

and velocity V relative to the cluster centre, then - as shown in 
Appendix A - the total change in the energy of the stars in the cluster 
can approximated as 

i(4a2/3) G2M2McRc2/(V2p4) (P ” Rc) 

(3.2) 
(302) G2M2Mc/(V2Rc2) (P <c Rc) 

for an impulsive encounter. Here a is the ratio of the root-mean-square 

cluster radius to Rc and p is the ratio of the root-mean-square inverse 

cluster radius to Rc-1 : 

ar <r2,1/2lRc , J3 I <r-2>1/2Rc (3.3) 

These parameters have well-defined values for a uniform sphere 
(a==, p-6), a Plummer sphere (a-3, p=l) and an isothermal sphere 

(a=1/6, p=2-3) but for now we leave them unspecified. We note that 
the expressions in eqn (3.2) do not match at p=Rc since they only apply 
in the small and large p limits. The expression in the p>>Rc regime is 
the same as that derived by Spitzer (1958). In the p<cRc regime, Wielen 
(1985) replaces p by Rc in the Spitzer formula. Moore (1993) covers 

both regimes with the fit ~E=~E(p=0)[1+(p/Rc)]-4. Clearly both 

approximations agree with eqn (3.2) to an order of magnitude. Note that 
the coefficient in eqn (3.2) in the p<<Rc case is an overestimate if the 
black hole is replaced by a more extended compact object (see $7). 

If the change in energy AE exceeds the cluster’s gravitational 
binding energy Ec, then disruption will be a one-off event, requiring a 
single encounter. We can express the condition for this as an upper 
limit on the black hole speed V for given distance of closest approach p: 



(2a2/3y2)1/2Vc(M/Mc)(Rc/p)2 (P ” Rc) 
V< (3.4) 

(3p2/2y2)“2Vc(M/Mc) (P cc Rc) 

If this condition is not satisfied, then the disruption of the cluster will 
be a cumulative effect, requiring many encounters. V/V, is usually 

large and, in this case, one-off disruption can only occur for M>>Mc. 

Indeed we show below that eqn (3.4) can never be satisfied for M<M,. 

Eqn (3.2) presupposes the validity of the impulse approximation 
and this breaks down if the traversal time of the hole exceeds the 
dynamical time of the cluster. The condition for this is 

i 

vc (P/Rc) (P ’ Rc) 
vc (3.5) 

vc (P < Rc) 

and the value of AE is then modified by a factor which is tabulated by 

Spitzer (1958). If the parameter c=(pVc/RcV) is small (corresponding 

to impulsive encounters), this factor is 1 but it decreases as exp(-t;) 

for large values of c. Since V is defined to be the speed of the black 
hole relative to the cluster centre, this necessarily exceeds the escape 
velocity at distance p, given roughly by 

Ve(p)2 = 2G(M+Mc)(p2+Rc2)-1’2 (3.6) 

More precisely V = JVe(p)2+V, 2 where V, is the speed of the black hole 
at infinity (prior to the encounter). 

We first consider the M>>Mc case, shown in Figure 2(a). The 
condition V>Ve(p) now becomes 

y-l/2Vc(M/Mc)f’2(Rc/p)1’2 (P ” Rc) 
V> P-7) 

y-1/2Vc( M/MC)1 12 (P << Rc) 

a ri d graQn%-IbrL I ?QL&D~~. ;1 is.- only _ important close to this limit. 
Conditions (3.4) and (3.5) intersect at 

v = (2a2/3y2)1/6Vc(M/Mc)l/3 , p = (2a2/3$)1/6Rc( M/Mc)1/3 (3.8) 



I 

2Lo 

so we have disruption by impulsive multiple encounters if V exceeds 
Vmin and if p lies between pdis and pmax where 

Vmin = Vc( M/k2Mc)l 13 1 (3.9a) 

Pmax = Rc(V/Vc) (3.9b) 

Pdis = Rc( M/k2Mc) 1’2(Vc/V)l’2 B[Vc(M/kl MC)-V] (3.9c) 

Here 0 is the Heaviside function and the constants kl , k2 are given by 

kl = (&y/6p), k2 B (Ey/fia) (3.10) 

from eqn (3.4). We have impulsive one-off disruption if V lies between 
Vmin and Vmax and p between pmin and pdis where eqns (3.4) and (3.7) 
imply 

Vmax = Vc(M/klMc) (3.1 la) 

pmin = Rc(MlyMc)(V/Vc)-2 B(Vc(MIyMc)1/2-V] (3.11b) 

In the M<cMc case, shown in Figure 2(b), the (M/MC) factors in condition 
(3.7) are omitted. Conditions (3.4) and (3.7) are now incompatible, so 
there is no one-off disruption in this case but one still has disruption 
by multiple encounters for p<Pmax. 

The possible consequences of encounters in the M>M, case are 
summarized in Figure (2a), which shows the (V,p) regime in which one 
has: (A) multiple-encounter disruption; (B) one-off impulsive 
disruption; and (C) non-impulsive encounters. Figure (2b) shows the 
M< M, situation: disruption can only occur via multiple encounters in 
this case, so region (8) does not exist. 

In order to determine the rate at which clusters disappear due to 
the processes discussed above, we must calculate the likelihood of 
passing black holes having values of p and V in the relevant range. In 
this context, it is important to distinguish between V and p (defined at 
closest approach) and the asymptotic velocity V, and impact parameter 
pm of the black hole since it is the latter which determine the 
encounter rate. From energy and angular momentum conservation, these 
quantities are related by 

V2 - Ve(p)2 = Vm2 , PV = pooV, (3.12) 
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For a given cluster, the number of encounters with black holes with 
parameters in the range (p,p+dp), (V,V+dV), (8,8+d6) and ($,$+d$) [where 

polar coordinates 0 and o specify the orientation of the black hole’s 
velocity] in the time interval (t,t+dt) is 

dN(p,V,B,$) = (2zp,dp,)(nV,dt)(V,2F(V,)dV,sine d0 do) (3.13) 

Here n is the number density of the black holes, assumed for simplicity 
to all have the same mass M, and 4zV,*F(V,)dV, is the fraction of them 
with velocities in the interval (V, ,V,+dV,). We assume either a 

Maxwellian distribution with 1 -dimensional velocity dispersion o, in 
which case 

F(V,) = (2n:lQo)-3exp( -V,*/4cr*) (3.14a) 

or a discrete distribution with all the holes having the same velocity 
Vo, in which case 

F(V,) = 6(V,-Vo)/(47cVo*) (3.14b) 

If we integrate over 8 and $ assuming an isotropic velocity distribution 
and then use eqn (3.12) to derive the Jacobian a(p,,V,)/a(p,V), the total 
encounter rate becomes 

dN(p,V)/dt = 8x217 jVdVjpdp [V2+(p/2)dVe2/dp] F([V2-Ve(p)2]‘/2) (3.15) 

where the integral is carried out over the relevant (V,p) region in 
Figure (2). So long as gravitational foussing can be neglected, the last 

two terms just give V2F(V). 

tion by sinale enuter% 

We first consider one-off disruption (which only occurs for 
M>>Mc). If all the holes have the same velocity Vo, assumed to be less 

than Vmax=Vc(M/klMc) but more than Vmin=Vc(M/k2Mc)“3, then eqn 
(3.15) implies that the timescale for one-off disruption is 

tdis = (dN/dt)-’ = [Knvpdis2]m’ (3.16) 

and eqn (3.9c) gives 



tdis = (&y/2mn)Mc/(nRc2MVc) for kl (V/Vc)<M/Mc<k2(V/Vc)3 (3.17) 

The range of values of M arises because one only has one-off disruption 
for M>kl M c( V/V,) and the impulse approximation fails for 
M>k2Mc(V/V,)3. For a discrete velocity distribution, one-off disruption 
cuts off abruptly at these mass limits. Note that the timescale (3.17) 
depends only on the density nM of the compact objects and not on their 
velocity. If the holes have a Maxwellian velocity distribution, eqn 
(3.17) is still a good approximation for Vmax>>a>>Vmin. For o>>Vmax, 
the disruption time exceeds the value given by eqn (3.17) by a factor 

-(o/Vmax)3. For o<<Vmin, it exceeds it by a factor w exp{(Vmin/40)2}. 
From eqns (3.9a) and (3.1 la), we therefore have 

[M&/k1 oMcJ-3 for M/Mc<ckl (00/c) 

tdis = {eqn (3.17)) x 1 for kl(o/Vc)<<M/Mcc<k2(o/V~)3 (3.18) 

exp{[MVc3/8k2Mca3J2/3} for M/Mc>>k2(a/Vc)3 

With an extended velocity distribution one-off disruption does not cut 
off sharply at the upper and lower mass limits in eqn (3.17). However, 
we will find that disruption is anyway dominated by multiple- 
encounters in the Mc<kl M&/Vc) regime. 

tion bv mule encounters 

For multiple disruption the rate of change of energy in the cluster 
is obtained by multiplying AE by the encounter rate dN(p,V)/dt and then 
integrating over p and V. We first assume all the holes have the same 
velocity Vo=V. For V>Vmax, we then obtain 

% Pmax Pmax 

dE/dt = (2nnG2M2Mc)/(3VRc2) [ 9p2 jpdp + 4cx2 jRc4p-3dp] 

= x{nG*M2Mc/(3V) with 5 =‘4a2+9p2 
Rc 

(3.19) 

For comparison, Wielen (1985) uses 5=8a2 (i.e. he assumes the pcRc and 
p>Rc contributions are the same). For Vmax>V>Vmin the p integral does 
not extend below pdis (which itself exceeds Rc), so eqn (3.9c) yields 

Pmax Pmax 

dE/dt = (8scct2nG*M*Mc)/(3VRc2) I Rc4p-3dp = (4~&/%)G2nMM&Vc 

Pdis Pdis (3.20) 
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For V<Vmin, one is in the non-impulsive regime, so the energy transfer 
is reduced by a factor exp(pVclRcV) and the lower limit in the p- 
integral is the value pmin given by eqn (3.11 b). We-therefore obtain 

dE/dt = (8zo12nG2M2Mc)/(3VR,2) 1 Rc4p-3exp(-pVc/RcV) dp 
Pmin Pmin 

= (47tor2y3/3)(nG2Mc3V3/Vc4) exp[-(MlyMc)(VcN)3] (3.21) 

Disruption by multiple encounters, unlike one-off encounters, does not 
cut off abruptly once V falls below V min even for a discrete velocity 
distribution. 

We next consider the Maxwellian case. As shown in Appendix A, 
for a>Vmax we obtain eqn (3.19) but with V replaced by &a; this is 
very close to the 3-dimensional velocity dispersion &L For 

Vmax>o>Vmin, we again obtain eqn (3.20). For o<Vmin, there is an 
exponentially damped contribution deriving from the impulsive 
encounters associated with the holes with velocity Vm in on the 
exponential tail of the Maxwellian velocity distribution and this gives 

dE/dt w (G*nM*McV&3) exp{-[MVc3/8k2Mca3]2/3j (3.22) 

where we have dropped a numerical coefficient and the same 
exponential factor appears as in eqn (3.18). 

The timescale on which clusters are disrupted by multiple 
encounters will be taken to be IE/(dE/dt)l. This neglects the changes of 
5 and Rc during the evolution of the cluster; both of these would tend to 
increase with time and this would reduce tdis. However, Wielen (1985) 

argues that this reduction is balanced by the fact that the outermost 
stars would escape from the cluster before sharing their energy with 
the other stars. On this assumption, we obtain 

(3ylxQVMcl(GM2nRc) for M/Mc<ki (VP&) 

tdis = (&/2a7t)Mc/(nR$MVc) for kl (V/Vc)<M/Mc<k2(V/Vc)3 (3.23a) 

(Vc2/nRc2V3) exp[(MlyMc)(V&/)3] for M/Mc>k2(V/Vc)3 



for a discrete velocity distribution. For a Maxwellian velocity 
distribution, V is replaced by Go in the first expression, the second 
expression is the same and the last expression becomes 

tdis u Mc2,3/(nM2Rc2Vc4)exp{[MVc3/4k2Mco3J2} for M/Mc%z(o/Vc)3 
(3.23b) 

We note that the timescale in the second expression in eqn (3.23a) is 
exactly the same as indicated by eqn (3.17) so multiple and one-off 
encounters contribute equally to disruption. We therefore take the 
“effective” disruption time to be half the value indicated by eqn (3.23a) 
in this case. 

Finally we consider the situation with McMc. As indicated in 
Figure 2(b), there is no one-off disruption in this case. However, 
disruption by multiple encounters still occurs and eqn (3.19) still 
applies for V>>Vc. Therefore the limit (3.23a) for M<kl Mc(V/Vc) can be 
immediately extended into the M<Mc domain. One can also still have 
non-impulsive encounters with V<Vmin-Vc and in this case eqn (3.27) 

with pmin=Rc(Vc/V)2 gives 

tdis - (Mc2Vc2/nM2Rc2V3) exp[(V&/)3] (3.24) 

In practice, encounters in this regime are negligible. 



4. Limits on the Density of Compact Objects 

We will now apply this analysis in some specific astronomical 
contexts, replacing the “black hole” with any compact object and the 
“cluster” with various types of star systems. Let- pco(M) be the local 

density of compact objects of mass M and let us assume that the 
average cluster is known to survive for some time tL. The requirement 

that this exceeds the disruption timescales derived in 53 imposes the 
following upper limit on pco: 

j‘(3y/xS)McV/(GMtLRc) for Mckl Mc(V/&) 

PC0 < *: (4.1 a) 
(&/4rca)MJ(V,tLR$) for kl Mc(V/Vc)<M<k2Mc(V/Vc)3 

where kl and k2 are given by eqn (3.10), 5 by eqn (3.19) and V is 
interpreted as the 3-dimensional velocity dispersion for a Maxwellian 
distribution. One also has 

t’ (MV$/R&3tL)exp[(M/yMc)(Vc/V)3] for M>kzMc(V/Vc)3 

pco < *; (4.1 b) 

i Mc%3/(MR$tLV&)exp{[MVc3/8k2Mc03]2/3} for M>k2M&/Vc)3 

for a discrete and Maxweilian velocity distribution, respectively. The 
smallest and largest mass regimes correspond to disruption by 
multiple encounters, the intermediate one to disruption by both 
multiple and single encounters. [Note that Carr (1978) erroneously 
applies the Mckl Mc(V/Vc) expression for values of M above kl M,(V/V,); 

Carr (1994) also gives an erroneous expression in the M>k2Mc(V/V,)3 

regime.] Any lower limit on tL therefore places an upper limit on pco 

The two expressions in eqn (4.1a) are discontinuous by a factor 

6ap/(4a2+9p*) at M=klM,(V/V,) due to the approximations used. A more 

precise treatment would obviously produce a smooth transition. 
E3rUlan,\l.,nar,ticular type of cluster (with fixed MC and Rc) the 

qualitative form of the limit on pco is shown in Figure (3),~S;‘UD’~tIfIhng (3),~S;‘UD’~tIfIhng 

for Vc using eqn (3.1) we note that limit (4.la) bottoms out at a 

density 

Pmax = (&/4xa)( M,/G R,3tL2)1/2 (4.2) 



If this exceeds the actual dark matter density p, one gets no useful 
limit on the compact objects at all. If it is less than the actual density, 
one requires that M either exceed Mmin or be less than Mmax where 

Mmin = (&/fia)M,(V/V,)3 (4.3a) _ 

M max = (37/x5) (McV)l(GptLRc) (4.3b) 

If pmax is comparable to the actual density, then it is possible that the 
compact objects actually determine the lifetime tL. Mmax is taken to 
be the mass at ‘which the permitted density begins to rise 
exponentially; this is somewhat below the actual limit. 

Limits (4.2) and (4.3) are sensitive to the parameters a, p and y. 

For a uniform cluster, a=0.8, p-l.7 and y=O.3, implying 5=30. For a 

Plummer sphere a=3, j3=1 and y-0.15, implying 5=45. For an isothermal 

sphere, a=O.6, p=Z-3 and y-0.8, implying c-40. We also need to specify 
theAensifv9 and velocity dispersion V in the different contexts. For 

the local halo we assume p-O.01 M,pc-3=7~1-&25 g cm-3 &id 

V=270kms-I. For the local disc we assume p=O.15M,pc-~-1x10-~~ g 
cm-3 and V=GOkms-1 . However, these velocities should be multiplied 
by 45 if the clusters have the same velocity dispersion as the compact 
objects. V should be compared to the 3-dimensional velocity dispersion 
within the cluster, which eqn (3.1) gives as 

v, = 50 (y/0.3)1/2( MC/1 06M &2( R~/pc)-~/~ km s-l (4.4) 

The limits on the fraction of dark matter in compact objects are 
summarized in Figure (4), with relevant parameters given in Table (2). 

Disruption of globular clusters by halo objects 

We will first determine the limit associated with the disruption 
of globular clusters (cf. Carr 1978, Sakellariadou 1984, Wielen 7987, 
1988, 1991). We will treat these as Plummer spheres with typical 

parameters M,=l OSM,, R,=l Opt and Vc=4kms-I ; since most globular 

clusters are known to have survived for the age of the Galaxy, we will 
take tL=l 010~. From eqn (4.2) the associated limit on the compact 
object density is 

Pmax z 2x10-26(,/3)-I (y/O.1 5)I/2(M~/105Me)I/2(Rc/l Opt)-312 

x (tL/l 01 Oy)-I gem-3 (4.5) 



For the globular cluster parameters chosen, this is a factor of 30 below 
the actual halo density, so one gets an interesting constraint on the 
black hole mass range. Eqn (4.3) with a 42 factor in V gives 

M max = 3x10~(y/0.15)(~/45)-~(Mc/l05Mo)(Rc/lOpcj-~(t~/10’~y)-~Mo 

P-6) 
M min 3 6x10~(a/3)-~(y10.15)(M~/105Me)(Vc/4kms-1)-3Me 

Between these two masses compact objects can be excluded from 
comprising all the halo dark matter. 

Numerical calculations for the disruption of globular clusters by 
Moore (1993) confirm the general qualitative features indicated above, 
with gradual mass loss for small halo objects and sudden disruption for 
larger ones. However, using data for nine particular globular clusters, 
he infers an upper limit of 103M, on the mass of the halo objects. This 
is considerably stronger than the limit implied by eqn (4.6). The 
difference derives from the fact that Moore’s globular clusters are 
smaller and more diffuse than assumed above. For example, Pal 5 
(which gives his strongest limit) has Mc=1.4x104M0 and Rc=14pc, so 

that Mmax is reduced by a factor of 10 from eqn (4.6). His clusters are 

also at a larger Galactocentric radius, although this weakens the limit. 

Disruption of open clusters by halo and disc objects 

The disruption of open clusters by compact objects has also been 
discussed by various authors (Carr 1978, Sakellariadou 1984, Wielen 
1985). We will treat these as uniform spheres with typical parameters 

M,=lOeM,, R,=lpc and Vc=0.5kms -1. Specifying the appropriate value 

for tLis problematic since open clusters (unlike globular clusters) are 

continually being created and destroyed: 50% have survived for 2x1 Osy, 

10% for 5x108~ and 2% for more than 109~ (Janes & Adler 1982). If we 
adopt the first figure as the representative lifetime, eqn (4.2) gives 

Pmax = 5x10-24(a/O.8)-1 (y/0.3)1/2( MC/I 02Me)1/2(Rc/pc)-3’2 

x (tL/2x 106y)-1 gem-3 (4.7) 

This is a factor of 7 above the halo density, so one gets no useful Ii m it. 
However, it is less than the disc dark matter density by a factor of 2, 
so the disruption of open clusters gives an interesting limit in this 
context. Eqn (4.3) with no d2 factor in V gives 



20 

M max c- SOO(y/O.3)(~/30)-' (MC/1 02Me)( Rc/pc)-’ (tL/2xlO8y)-’ Me 

(4.8) 

M min = 9x107(a/0.8)-1 (y/0.3)(M~/l02Me)(V~/0.5kms-l)-3 Me 

As discussed by Wielen (1985), other processes are already known to 
disrupt open clusters (eg. encounters with molecular clouds), so the 
mass range may be even more confined than indicated above. 

Disruption of binaries. by disc and halo objects 

To an order of magnitude, one can also use eqns (4.1) to determine 
the constraint on the black hole density associated with binary 
systems in the Galactic disc. For comparison, if the black holes have 
number density n and mass M, a more precise calculation of binary 
disruption (Heggie 1975) gives a binary half-life of 

[In2 (3/2x)1/2/40] (Ml +M2)V/[GnM2a] (M<<Mcrit) (4.9a) 

h/2 h/2 = 
[I 5ln2/25n] (Ml +M2)1/2/[Gl/2nMa3/2] (M>>Mcrit) (4.9b) 

where Ml and M2 are the masses of the components, a is their 
separation and 

Merit = O.l2(Ml+M2)(V/Vc) with VC = [G(Mi +M2)/a11/* (4.10) 

Eqns (4.9) are equivalent to the first two expressions in eqn (3.23a) 
with Mc=( M 1 +M2) and Rc=a, while the mass Merit just corresponds to 
the mass kl Mc(V/Vc). Indeed, even though the previous analysis is 
really only applicable for many bodies, one can even reproduce the 
coefficients in eqns (4.9a) and (4.9b), 0.01 and 0.1 respectively, by 
choosing a=l, y=O.3 and 5-30. However, there is an important 
qualitative difference in that a binary (unlike a cluster) can be 
disrupted by an encounter which is close to just one component and it 
is this process rather than multiple encounters which determines tl/2 

in the M<<Mcrit case. Our choice of a, y and 5 should therefore be 
regarded as purely empirical. 

Bahcall et al. (1985) were motivated by the claim that the 
distribution of wide binary separations exhibits a cut-off above about 

0.1 pc (Latham et al. 1984). If we take M,=2M,, R,=O.l pc, Vc50.2 km s-l 
and tL=l Otoy in eqn (4-l), we then obtain a limiting density 



Pmax z 4x1 O-25a- ’ (y/0.3)1/2( Mc/2Me)“2( Rc/O.l PC)-3’2 

x (tL/l 01 Oy)-1 gem-3 (4.11) 

For halo objects this is weaker than the globular cluster limit and 
therefore uninteresting. HEwever, the limit is interesting for disc 
objects, eqn (4.3) with no 42 factor in V then giving 

M max 3 2(y/0.3)(~/30)-‘(Mc/2M~)(Rc/0.‘pc)-’(t~/10’0y)-‘Me 

(4.12) 

M min = 2xlO7a-1 (y/0.3)(Mc/2Mo)(Vc/0.2kms-l)-3Mo 
* - 

Thisyan important constraint because, if correct, it would rule out disk 
dark matter comprising stellar black holes. However, the Bahcall et al. 
conclusion has been disputed by Wasserman & Weinberg (1987, 199 l), 
who claim that the apparent cut-off at 0.1~~ is a selection effect and 
that, in any case, one would not expect a sharp cut-off in the 
distribution of binary separations. Unless future observations dispel 
this criticism, the strongest limit on the mass of disc objects comes 
from the disruption of open clusters. 

Disruption of galaxies by dark objects in clusters 

Finally we apply eqn (4.1) to the disruption of galaxies in 
clusters of galaxies by cluster compact objects. In this case, the 
“clusters” of 93 are entire galaxies. If we take the galaxies to be 
isothermal spheres with characteristic parameters MS=lO1lM, , Rg=10 

kpc and Vc=270kms-1 and assume that they survive for a cosmological 

timescale of 101 Oh-1 y, then 

Pmax = 7x10-27(a/O.6)-1(y/O.8)1/2h( Mg/lOl 1 M e)l/2( Rg/l Okpc)-3/2 

x (tL/l Ol Oh-ly)-1g cm-3 (4.13) 

A typical cluster of galaxies has a mass of 1015M, and radius of 3 Mpc, 

corresponding to a mean density of 7x1 O-289 cm-? This is below Ii m it 
(4.13), which suggests that the disruption constraint is uninteresting. 
However, the density within a cluster increases as one moves inwards, 
so the disruption limit should at least become interesting sufficiently 
close to the centre. 

For a more precise analysis, we consider the specific case of the 

Coma cluster (White et al. 1994). This has a virial radius of 1.5h-1 Mpc 

and a mass of 4xl014h-1 M, within that radius, which corresponds to a 
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3-dimensional velocity dispersion of V=103kms-1 and a mean density 

of 2x1 O-27h2 g cm-? The density at the virial radius itself is about 
three times smaller than this. The dark matter density appears to 

increase at least as fast as r -2 down to 0.2 Mpc and then as r-1. This 

means that the density has risen to at least 7x10-26h2 gem-3 at 

R=O. 15h-1 Mpc, which is 10 times the density given by eqn (4.13) for 
h=l. At this distance eqn (4.3) together with the fi factor in V gives 

M max = 7xl09h-’ (y/0.8)(6/40)-’ (Mg/l 0’ ’ Me)(Rg/l Okpc)-’ 

x (tL/l O’ Oh-‘y)-‘Me 

(4.14) 
M min z 3x1013(a/0.6)-1 (y/0.8)(McllO11 Ma)(Vc/2fOkms-l)-3M, 

There are various caveats in imposing this limit. Firstly, we know that 
many galaxies in the central regions anyway collide with each other in 
the age of the Universe; at the very centre they may also be destroyed 
by the tidal field of the CD galaxy (Moore et al. 1996). Secondly, if 
galaxies are on radial orbits, they may only spend a small fraction of 
the time in the central regions, which would reduce the effective value 
of tL. However, there is evidence that orbits are fairly isotropic at 
small radiii, implying that galaxies may remain there for most of a 
Hubble time (Dubinski 1997). Thirdly, not all galaxies have the mass 
and radius assumed in eqn (4.13) and some of them may be disrupted on 
a shorter timescale. 

Another limit on the dark objects in clusters comes from 
considering unexplained tidal distortions in the galaxies. If we assume 
that compact objects induce noticeable tidal distortions in any 
galaxies which lie within a factor h-3 times the tidal radius 

RT-Rg(M/Mg) 113 (the factor h representing the difference between 
distortion and disruption), then the fraction of instantaneous/y 
distorted galaxies should be 

ANg/Ng = h3(Pco/Pg) (4.15) 

where pg is the internal galaxy density and pco is the density of the 

dark objects. This effect only operates for M>h-3Mg=3x109M e since 
otherwise the tidal distortion radius is smaller than Rg. One infers a 
bWon. the. -camoact obiect density _ 

PCO < h-3(ANg’Ng)Pg = 2x1 O-26(X/3)-3(ANg/Ng) g cm-3 (4.16) 



This is less than the typical mean cluster density of lo-279 cm-a, so 
that one has an interesting limit, providing the fraction of distorted 
galaxies is less than about 5%. In general the fraction of the cluster 
dark matter in compact objects must satisfy fc2qANglNg). Towards 
the centre of the cluster, the limit is stronger. Of course, the number 
of instantaneously distorted galaxies will be less than the number 
which have ever been distorted. Eqn (4.16) assumes that the distortion 
only persists during the encounter itself, the tidal stretching being 
reversed as the compact object recedes after closest approach. The 
limit would be stronger if the distortion persisted longer than this. 

Van den Bergh (1969) applied this argument to the Virgo cluster. 
He found that 10 of the 73 cluster members exhibit distortions which 
might be attributed to tidal interaction and 6 of these have companions 
which presumably cause it. Therefore at most 4 out of 73 galaxies (6%) 
have unexplained distortions and even these cases might be due to 
internal effects. He inferred that black holes binding the cluster could 
not have a mass in the range 108 -10 13M a. However, it is not clear 
where his upper mass limit comes from and the lower mass limit would 
seem to be rather low. According to our analysis, only can only infer 
that the dark mass cannot be in compact objects larger than 3xlO?M,,, 
although the fraction would be much more constrained near the centre. 
This limit is shown by the broken line in Figure (4). 

Table (2): Parameters assumed and constraints derived for the 
disruption of globular clusters (GC) by halo objects, open clusters (OC) 
and binaries (8) by disc objects, and galaxies (G) by cluster objects. 
The maximum density of the objects, the maximum mass for which they 
can contain all the dark mass and the minimum mass for which the 
limits can be obviated are indicated. The constraints assume the values 
for a, p and y appropriate in each context. 

MC MC 

(Me) (Me) 

oi: oi: 105 105 

oc oc 102 102 

6 6 2 2 

G G 10' 10' ' ' 

RC RC VC VC 

(PC) (km s-l) 

10 10 4 4 

1 1 0.5 0.5 

0.1 0.1 0.2 0.2 

lo4 lo4 260 260 

Pmax 

(9 cm-3) 

2x10-26 2x10-26 

5x10-24 5x10-24 

4x10-25 4x10-25 

7x10-27h 7x10-27h 

Mmax Mmin 

(Ma) We) 

3x104 3x104 6~10~ 6~10~ 

5x102 5x102 9x7 9x7 o7 o7 

2 2 2x107 2x107 

7x10gh-' 7x10gh-' 3x10'3 3x10'3 



5 The Effect of Dynamical Friction on Halo Objects 

Any objects in the Galactic halo will tend to lose energy to 
lighter objects via dynamical friction and consequently drift towards 
the Galactic nucleus (Chandrasekhar 1960). At a ‘given Galactocentric 
radius r, this means that all objects larger than some mass Mdf(r) will 
have been dragged into the nucleus by now. [The radius r should not be 
confused with radius R used in the discussion of clusters.] In this 
section we calculate the form of the function Mdf(r) and then use upper 
limits on the dark mass in the Galactic nucleus to infer constraints on 
the fraction fh(M) of the halo contained in compact objects of mass M. 
More technical aspects of the calculation are relegated to Appendix B. 

Various sources of drag will act upon the halo objects, so it is 
important to identify the dominant one at each Galactocentric radius. 
Within the central few kiloparsecs the dominant source will be the 
spheroid stars. Beyond that the effect of the disc stars will also be 
important, although this is complicated since it depends on the 
inclination of the orbit of the halo object relative to the plane of the 
Galaxy. At still larger radii the halo objects themselves may provide 
the dominant source of drag. [This assumes they have an extended mass 
spectrum, so that the smaller ones can provide drag for the larger ones; 
we will take this to be the case, even though - for simplicity - most of 
the considerations of this paper take the dark objects to have a 
discrete mass spectrum.] The dynamical effect of the spheroid stars 
has been discussed in detail by Carr & Lacey (1987; CL) and here we 
extend their analysis beyond the spheroid. A precise treatment of 
dynamical friction in this region is complicated. However, since the 
combined density of the spheroid, disc and halo is such as to produce a 
roughly flat rotation curve at large r, we can derive approximate 
results by using the dynamical friction formula appropriate for a 
single-component constant-velocity isothermal sphere (Tremaine et al. 
1975). For convenience we will take the halo to be spherically 
symmetric. 

We must first specify the density of each component. We assume 
that the spheroid has a density profile 

1 

pi (ri Wg15 (r c ri > 
Ps(r) = (5.1) 

pi Pi W3 (r > ri 1 

where rl=8OOpc and pi =1.8M,pc-3 and that the halo has an isothermal 
density profile 
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p0(r0W2 p0(r0W2 (r (r < < k) k) 

Ph(r) = (5.2) 

Po(ro/r)2 (r ’ rc) 

where ro=8kpc is our own Galactocentric distance, rc is the halo core 

radius (probably in the range 2-8 kpc) and po-O.OlMepc-3 is the local 
halo density. Various alternatives to eqn (5.2) have been proposed: 

Navarro et al. (1995) argue for a profile which goes from r-l to r-3 

with increasing r; Hernquist (1990) for one which goes from r-1 to r4. 
The calculations below can easily be extended to cover these cases but 
we adopt eqn (5.2) since this case is the simplest to analyse. Both the 

Navarro et al. and Hernquist et al. profiles scale as r2 over some range 
of radii and the precise form of the core profile is not crucial anyway 
since the disc has a large effect in this region. 

Comparison of eqns (5.1) and (5.2) shows that the halo density 
dominates the spheroid density outside a radius 

r2 = 1 .8(rc/2kpc)2/3kpc (5.3) 

and this is always within the halo core for reasonable values of rc. 
However, the mass m(r) within radius r will be dominated by the 
spheroid well beyond r2. Indeed, eqns (A3) and (A16) of the Appendix 
show that the halo only dominates m(r) outside the radius r3 
determined by 

r3 = (2/3)rc + [I .3 + 1.5ln(rg/rl)J kpc (5.4) 

This is always exceeds rc and it may be close to ro. For example, 
r3=5kpc for rc=2kpc, r3=6kpc for rc-3kpc and r3=7kpc for rc=4kpc. The 
disc will also be important in the region r>r2 and this may increase the 
radius r3 beyond which the halo dominates the mass. One can thus 
divide the Galaxy into four regimes: the inner spheroid (r<rl) and the 
outer spheroid (rl <r<r2) [the density and mass being dominated by the 
spheroid in both of these regimes], the outer halo (r>rg) [in which the 
density and mass are dominated by the halo], and a complicated 
intermediate region (r2<r<r3) [in which neither the spheroid nor the 
halo dominate and the effect of the disc must be included]. 



If we assume for simplicity that each halo object always moves 
on a circular orbit, then its orbital radius will shrink according to 
(Chandrasekhar 1960) 

dr/dt = - 4xG2M(lnh)A(vcl&)rp(r)/[(l +dlnvc/dlnr)‘vc(r)3] (5.5a) 

A = rvc2/GM (55b) 

A(x) = erf(x)-x(d/dx)erf(x) (5.5c) 

Here vc(r) and a(r) are the circular velocity and 1 -dimensional velocity 
dispersion at radius r for the objects providing the drag. The result for 
a more realistic distribution of orbital eccentricities probably does not 
differ very much. A precise calculation of vc(r) and c(r), allowing for 
the effects of the spheroid, disc and halo, is difficult because these 
functions depend upon both the mass and density at radius r. However, 
we note that dr/dt depends primarily on p(r) and vc(r), with the latter 

being determined entirely by m(r). The dependence on o(r), the only term 

which involves both p(r) and m(r), is weak. For an approximate analytic 
calculation, we therefore adopt the spheroid expressions for all the 
terms in eqn (5.5a) if r<r2 and the halo expression for all the terms if 

r>r3. Solving for vc(r) and a(r) in these two radial regimes then gives 
expressions for dr/dt as a function of r and these are derived in 
Appendix B. In the intermediate regime r2<r<r3, we will merely invoke 
the observed constancy of vc(r) in eqn (5.5a) and not attempt to solve 
the problem self-co-nsistentfy. “.” ‘.I’-‘! “I. 

Since dr/dt always goes roughly like rp/vc3 with vcw(m/r)1/2, it 

scales as pm -3/2r5/2. In the regions for which the mass and density 

are dominated by the spheroid and halo alone, m-pr3 and so dr/dt goes 

like p-1/2r-2. The power law dependences of p on r in the different 
regimes then imply that the drift rate scales as 

dr/dt 0~ {r-11/10, r-1/2, r-l} {rcrl, rl <r<r2, r>r3} 

and the corresponding drift time is 

tdr = {10/21, 2/3, l/2} r/(dr/dt) {r<rl , rl <r<r2, r>r3} (5.6) 

The form of tdr as a function of r is shown in Figure 5(a). For rcr2 and 
r>r3 this is an increasing function of r, so tdr is also nearly the 
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timescale tdf(r) on which the compact object drifts from the initial 
radius r to the origin. For r2<rer3, the form of tdr is difficult to 

calculate analytically. However, as discussed in Appendix B, an 
approximation in which one neglects the effect of the disc and assumes 

that m is dominated by the spheroid and p by the halo suggests that tdr 
first decreases and then increases with increasing r. In this case, the 
time to drift to the origin is roughly tdr(r2) for values of r such that 
tdr(r) is less than this. We can therefore identify a radius r4 at which 
tdr=tdr( r2) and assume that tdf(r) is flat between r2 and r4. 

The expressions for dr/dt given by eqns (BIO) and (822) imply 
that tdf is less than the age of the Galaxy tg providing r is less than 

1 .O(M/l OGM,) ‘0/21&-/l O’Oy)‘O/2’ kpc (rdf<ri > (5.7a) 

rdf = 1.4(M/l 06M,)2’3(tg/1 0’0~) 2% (rdf) kpc (ri -we) (5.7b) 

I .2(M/10sM,)t’2(tg/l Otoy)1/2f2(rdf) kpc (rdf=r4) (5.7c) 

where rdf increases discontinuously from r2 to r4. The first two 
expressions were derived by CL. The functions fi have only a weak 
dependence on rdf: 

fl (rdf) = [1+(6/l l)ln(rdf/rl )] -2/3[1+(6/5)fn(rdf/rl )]-‘I3 (5.8a) 

f2 (rdf) = [I -(rc/3rdf)] -1/2[1 -(2rc/3rdf)]-1 I4 (5.8b) 

For example, if rc=2kpc, fl varies between 1 and 0.6 as rdf goes from 
rl to r2, while f2 varies from 1.6 to 1 .I as rdf goes from rc to ro. 

For each of the Galactocentric radii (rl ,r2,ro), eqn (5.7) specifies 
the mass for which the timescale tdf equals the age of the Galaxy: 

Ml = 6x105(tg/1010y)-lMe 

M2 = 3xl06(tg/101Oy)-l(rc/2kpc)[fl (r2)/0.6]-3’2Me (5.9) 

MO = 4xl07(tg/lOl Oy)-1 [f2(ro)/l. I]-2M Q 

Note that fl (r2) and f2(ro) themselves depend weakly on rc. If the halo 
objects all have the same mass M, then comparison with these values 
immediately indicates the Galactocentric radius within which halo 



objects are dragged into the nucleus by now. In the Lacey-Ostriker 
scenario (see 96), M=2x106Me and so rdf lies between rl and r2 but 
generally M could lie in any range. Although other dynamical limits may 
preclude all the halo being in objects as large as the mass-scales 
indicated by eqn (5.9), we must also consider the situation in which the 
halo fraction is small. 

Eqn (5.7) has the feature that rdf, regarded as a function of either 
M or tg, jumps discontinuously to r4 once it reaches r2. The value of r4 
comes from substituting M=M2 in eqn (5.7c), so it is given implicitly by 

rq = 3(rc/2kpc) 1/2[f1 (r2)/0.6] -3/4[f2 (rq)/1.5] (5.10) 

Generally rq lies between r2 and r3, so one should not strictly apply 
eqn (5.7~) (which assumes halo domination of the mass) all the way 
down to rd. However, since the extra contribution of the disc ensures 
that the rotation curve remains flat well below r3, the error involved 
in this extrapolation is only small. Note also that expressions (5.7a) 
and (5.7b) are discontinuous at r=rl . This is because the expression for 
tdr in the r>rl regime omits the time required to drift through the rcrl 
regime and this cannot be neglected just above rl . Figure (5b), which 
shows the dependence of rdf upon M, smooths out this discontinuity. 

The total mass dragged into the Galactic nucleus is just the halo 
mass contained within the radius rdf. From eqn (B16) this is 

(4x/3)fhpcrdf3 = 7xl08(rc/2kpc)-2(rdf/kpc)3 M. (rdfcrc) 
MN= (5.11) 

4xfhPcrc2rdf = 8x10g(rdf/kpc)( I-2rc/3r) Ma (rdf>rc) 

where pc=O.l6(rc/2kpc)-ZMepc-3 is the core density and fh is the 
initial fraction of the halo density in the compact objects (assumed to 
be independent of r). For the different radial regimes we therefore have 

! 7x1 Osfh(M/l 06M,)1c/7(tg/l 01oy)lo/7(rc/2kpc)-2M. (M-W) , 
i i 

MN =! 2x1 Ogfh(M/l OsM,)2fl (M)3(tg/1010y)2(rc/2kpc)-2MQ (MI <<M<M2) 
I (5.12) 
~8x1 Ogfh(M/l 06M,)“2f2(M)(tg/l 0’0y)“2Mg (M=N?) 

where we have put (I-2rc/3rdf)-0.8 in the last expression. MN exceeds 
the upper observational limit of 3xlO6M, on the central dark mass 
(Sellgren et al. 1990, Spaenhauer et al. 1992) unless 
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fh < ‘; (M/4x104Ms)-2fl (M)-3(rc/2kpc)2(tg/l O1oy)-2 (MI <cM<M2) (5.13) 
, 

JMI0.1 MO) -‘/2f2(M)-‘&/I O’~Y)-“~ (M>;M2) 

These limits, which are shown in Figure (5c), are sensitive to the age 
of the Galaxy and the halo core radius but the dominant constituent of 
the halo must anyway be smaller than 

Mmax=2x104(tg/1010y)-1(rc/2kpc)‘*4Me (5.14) 

Eqn (5.13) extends the CL limit and also modifies the dynamical 
friction limit shown in Carr (1994). Eqns (5.12) and (5.13) are 
discontinuous at the mass junctions for the same reason that eqn (5.7) 
is but these discontinuities are smoothed out in the figures. 

Although this argument would seem to preclude supermassive 
black holes as halo objects, there is an important caveat in this 
conclusion (Hut & Rees 1992). One can use eqn (5.12) to determine the 
number of holes which have drifted into the Galactic nucleus by now 
(MN/M) and hence the time between their arrivals (Mtg/MN). [In the 

Lacey-Ostriker scenario (discussed in 56) about 103 holes have drifted 
into the Galactic nucleus, corresponding to one arrival every 107y.l 
Once two black holes have reached the nucleus, they will form a binary 
system and this will eventually coalesce due to energy loss through 
gravitational radiation. If a third hole arrives before coalescence 
occurs, then the “slingshot” mechanism could eject one of the holes and 
the remaining pair might also escape due to the recoil (Saslaw et al. 
1974). In the Lacey-Ostriker scenario, Hut & Rees estimate that the 
time for binary coalescence is shorter than the interval between 
infalls, suggesting that slingshot is ineffective, and this conclusion 
would apply for a wide range of M. However, there is another problem 
with applying eqn (5.5): since the energy lost by the infalling holes 
must be gained by the stars responsible for the drag, these stars w i I I 
tend to drift outwards, so their number density in the central region 
will be depleted. Eventually this will suppress dynamical f ric t io n 
altogether unless there is an efficient mechanism to replenish the 
loss-cone (Begelman et al. 1980). If the halo objects are not black 
holes, the slingshot mechanism is probably too weak to eject them 
from the nucleus. Since limit (5.13) is not completely firm, it is only 
shown dotted in Figure (7). 
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6. Disc Heating by Halo Compact Objects 

As halo objects traverse the Galactic disc, they will impart 
energy to the stars there. This will lead to a gradual puffing up of the 
disc, with older stars being heated more than younger ones. This 
problem was first analysed by Lacey (1984) and Lacey & Ostriker 
(1985) who argued that black holes of around 106M, could provide the 
best mechanism for generating the observed amount of disc-puffing 
(Wielen 1977). In particular, they claimed that this could explain: (1) 
why the velocity dispersion of disc stars (T scales with age as V/2; (2) 
the relative velocity dispersions in the radial, azimuthal and vertical 
directions; and (3) the existence of a high energy tail of stars with 
large velocity (cf. lpser & Semenzato 1985). In order to normalize the 
o(t) relationship correctly, the number density of the holes n must 
satisfy nM2=2xl04M $pc-3 and combining this with the local halo 

density ph=nM=O.Ol M~pc-3 gives M=2x106M0. 
This argument may no longer be compelling because more recent 

measurements give smaller velocity dispersions for older stars, so 
that 0 may no longer rise as fast as V/2 and may even be flat for the 
oldest stars (Carlberg et al. 1985, Knude et al. 1987, Stromgren 1987, 
Gomez et al. 1990, Meusinger et al. 1991). Heating by a combination of 
spiral density waves, giant molecular clouds and infalling satellite 
galaxies may now give a better fit to the data (Lacey 1991). On the 
other hand, this conclusion is disputed by Wielen et al. (1992) and 
Fuchs et al. (1996) who argue that both the velocity dispersion and 
metallicity dispersion data indicate o-V/2; they suggest that the 
conflict may result from the use of a sample which is unrepresentative 
in that it avoids old metal-weak stars. Wielen & Fuchs (1988) claim 
that black hole heating also explains the dependence of the velocity 
dispersion upon Galactocentric distance. In any case, one can still use 
the Lacey-Ostriker argument to place an upper limit on the density in 
halo objects of mass M, as emphasized by Carr et al. (1984). We briefly 
review and update the analysis here. 

Lacey & Ostriker start with Chandrasekar’s (1960) expressions 
for 2-body encounters and then use various approximations in applying 
them to study the interactions between disc stars and halo black holes. 
The holes are assumed to be much more massive than the stars and to 
have an isothermal distribution with an isotropic Maxwellian velocity 
distribution. Their l-dimensional velocity dispersion oh is taken to be 
much larger than that of the stars and the halo rotation is presumed 

n&li@breT’- Inertk%lP% n,q,~~o,ts,.-of -the velocities in the radial, 
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tangential and vertical directions (u,v,w) have dispersions mu, CTV and 

ow which evolve as 

w(t) = (0~02 + Det)“2 

ov(t) = (0~02 + p-2Det)1’2 (6.1) 

ow(t) = (owo2 + Dzt)1’2 

where (ouo, ova, awo) are the initial dispersions and 

p = 2S210 = [1+(1/2)(dlnQ/dlnr)]-1’2 VW 

with Q and o being the orbital and horizontal epicyclic frequencies 
respectively. The diffusion coefficients in eqn (6.1) are 

De = 2xG2nM2lnA {2p2A(v&oh)+B(vc/fioh)}(oh2/vc3) 

DZ = 2nG2nM2lnh B(Vcl&h)l(ah2/vc6) (6-3) 

Nx) = erf(x)-x(d/dx)erf(x), B(x) = (2x2-l)erf(x)+x(d/dx)erf(x) 

where vc is the rotational velocity of the stars and A=mgat/M from eqn 
(55b). The total velocity dispersion therefore evolves according to 

o(t) = (ou 2+ bv 2+ CTW 2)1/2 = (0~2 + cxG2nM2t/vc)1/2 (6.4) 

where the dimensionless quantity a is given by 

CL = 4~ InA {(l+p2)A(vc/fioh)+(l +l/2p2)B(vc/@oh)}(oh/vc)2 (6.5) 

If the observed total velocity dispersion is oobs, this yields a limit 

pM < aobs2vc/(atsG2) F-6) 

where p=nM is the local density of the holes and ts is the time for 
which the stars have been heated (i.e. their age). Note that the form of 
eqn (6.6) can also be inferred from the first expression in eqn (4.la) if 
we regard the Galactic disc as a “cluster” which is being heated by 



encounters. However, since the disc is only being puffed up and not 

completely disrupted, the limit is reduced by a factor (c~/vc)~. 
To apply this result we need to evaluate the various numerical 

factors in eqn (6.5). Lacey uses InA- 3, 6-l .5 and_vclfioh-1 [implying 

A(vc/%h)=0.3 and B(vc/fiah)=O.?]. The value of aobs depends on 

which stars one considers: Ostriker & Lacey took it to vary from 

20kms-1 for A-F stars with an age of 109~ to 60kms1 for K-M stars 

with an age of 1010~ (this being compatible with the owt1/2 relation). 
The estimate for the older stars is now in dispute but these are the 

ones which give the strongest limit if o grows more slowly than t1/2. 

Assuming a local halo density of ph=O .Ol Mepc-3, eqn (6.6) gives a 

maximum mass for the black holes which dominate the halo of 

M~~x=3xlO6(ph/O.O1 Mepc-3)-l (oobs/60kms-1)2(ts/1010y)-I Me (6.7) 

and the general limit on the halo fraction in black holes of mass M is 

fh < min [I ,(M/Mmax)-‘I w3) 

This limit is shown by the broken line in Figure (5~). 
By applying the same analysis to the giant SC galaxy NGC 3198, 

using the velocity dispersion determined by Bottema (1988) and the 
halo parameters derived by van Albada et al. (1985)) Friese et al. 
(1995) obtain an upper limit of 2x1 OSM,, which is about the same as 
that obtained for the Milky Way. Since Mmax scales as ph-l&s-1, one 
can also apply the disc-heating argument to galaxies with higher dark 
matter density or lower stellar velocity dispersion or larger age to 
obtain even stronger constraints (Fuchs & Wielen 1993). For the gas- 
rich dwarf galaxy DD0154 (which has 0=17kms-1, an age of at feast 1.5 

Gyr and a central dark matter density of O.OOSM,pc-s), Rix & Lake 
(1993) find M<7xl OSM,. For the dwarf galaxy GR8 (which has o=4kms-1, 
an age of at least 1 Gyr and a central dark matter density of 0.07M0 
PC-~), they find M<6x103Mo. Friese et al. (1995) argue that the light 
from these galaxies is dominated by bright young stars which would not 
have experienced much heating anyway. On the other hand, Fuchs et al. 
(1996) show that the halo of DDOI 54, if made of 106M, black holes, 
wo.uld have become very diluted by now as a result of 2-body 
relaxation. In any case, unless the ‘bladk ‘rides ‘mm +rwdze?&&‘,, 
there is no reason for expecting halo objects to have the same mass in 
different galaxies, so these limits are not shown in Figure (7). 



7 Dark Clusters 

We have seen that both the cluster disruption and dynamical 
friction constraints may be incompatible with the proposal that the 
halo is populated with supermassive black boles. There is also the 
problem that halo black holes might generate too much radiation 
through accretion as they traverse the disc (Ipser & Price 1977, 1982, 
Carr 1981, McDowell 1985, Heckler & Kolb 1996). However, it is still 
possible that the halo is made of supermassive objects which are 
themselves clusters of black holes of more modest mass. The accretion 
luminosity is then reduced by a factor of order the number of objects 
per cluster (since the Bondi accretion rate and hence the luminosity 
scale as the square of the black hole mass) and the dynamical friction 
problem is avoided provided the clusters are disrupted by collisions 
before they are dragged into the Galactic nucleus by dynamical friction. 
Even if the clusters comprise objects other than black holes, so that 
the accretion problem is circumvented, it is still necessary to invoke 
collisional disruption to avoid the dynamical friction problem. 

The dark cluster proposal was originally examined by Carr & 
Lacey (1987; CL) in an attempt to salvage the Lacey-Ostriker scenario 
for disc-heating by 2xlOsM Q black holes. We have seen that this 
scenario may no longer be plausible but the cluster proposal itself is 
still viable and indeed arises very naturally in many models for 
Population Ill formation (Ashman 1990). Kerins & Carr (1994; KC) 
therefore generalized the idea to a scenario in which the clusters have 
arbitrary mass and are made of brown dwarfs. Wasserman & Salpeter 
(1994) applied the same idea to study clusters of neutron stars. Moore 
& Silk (1995) extended these calculations, allowing for two extra 
dynamical effects: the disruption of globular clusters by the dark 
clusters (cf. §4) and the destruction of the dark clusters themselves by 
the Galactic tidal field. Further studies of the cluster scenario have 
been made by De Paolis et al. (1995) and Kerins (1997). We review and 
update these calculations here. 

Let us assume that the dark clusters all have the same mass Mc 
and radius Rc. They may then be disrupted by essentially the same 
processes discussed in 93, except that the “black hole” in that analysis 
is replaced by another cluster of the same mass as the one being 
disrupted (i.e. M=Mc). This means that one-off disruption (which 
requires M>>Mc) never occurs but multiple encounters between clusters 
will -sit11 ‘TtfbL +h +htir. disruption. For simplicity we assume that the 
clusters have a uniform density, A necessary con-&iron ‘rv~ %f~r@i~~. is- 
that the 3-dimensional velocity dispersion within the clusters, which 



is given by eqn (4.4) with y-0.3, be less than the relative 3-dimensional 

velocity dispersion (fiVh) of the halo objects. Outside the halo core, 

Vh-270kms-1 and so we require 

Rc > 0.02(Mc/108M~) pc (7.1) 

[Eqn (820) implies that Vh decreases at smaller Galactic radii, reaching 

a minimum which is smaller by a factor a/3=0.7 at the core radius 
itself; although this would increase the coefficient in eqn (7.1) to 0.03, 
the effect of the disc and spheroid stars will counteract this, so we 

will always normalize Vh to 270kms -1 .] We will find that condition 

(7.1) is always satisfied for the clusters of interest. However, one also 
requires enough encounters within the age of the Galaxy for disruption 
to occur and this condition need not be. CL show that the disruption 
time can be approximated as 

tdis = (6/20J;F)Vh/(GfphRc) 

= 2xlOlOfh-l (Vh/270kms-I)( max[r,rc]/2kpc)2( Rc/pc)-l y (7.2) 

where fh is the fraction of the halo in the clusters and we have used 
eqn (5.2) for the halo density. [This is the same as the first expression 
in eqn (3.23a) with M-M c except that the numerical coefficient is 

changed because eqn (3.2), from which it derives, must be modified for 
clusters of equal mass.] The disruption timescale is minimized at the 
halo core radius and then increases with Galactocentric radius. 
Therefore, if disruption is to occur at all, it must do so at rc and the 
condition for this is 

Rc > 1.8fh-1 (rc/2kpc)+/l Oloy)-1(Vh/270km.s1) pc (7.3) 

If this is satisfied, clusters will also be disrupted within a 
Galactocentric radius 

rdis = ‘.5( Rc/pc) 1/2(Vh/270kms-‘)-~/2(tg/1010y)1’2fh1’2 kpc (74 

Indeed it is then a general feature of the cluster scenario, as 
emphasized by De Paolis et al. (1995), that there is some 
Galactocentric radius within which the halo is broken up into its 
cluster components. 



The dynamical friction limit will be obviated providing rdi s 

exceeds the radius rdf derived in 94. CL assumed that the only source of 

dynamical friction is the spheroid stars. For general M, eqn (5.7b) with 
fl=O.6 then implies that dynamical friction is inoperative providing 

Rc > 0.3(Mc/l 06M~)4/3(Vh/270kms1)(tg/l 010y)1/3fh-1pc 

(MI <Mc<Mz) (7.5) 
where Ml and M2 are given by eqn (5.9). However, we have seen that 

collisions - if important at all - necessarily persist beyond the halo 
core and, since rc always exceeds the radius r2, it is more appropriate 

to use eqns (5.7~). Instead of limit (7.5) we then obtain 

Rc > 0.8(&/l 06M,)(Vh/270kms-l)fh-1 pc (Mc>M4) (7.6) 

where we have taken f2=1 .l in eqn (5.7~). If this condition is not 

satisfied, then Mc must be less than the value indicated by eqn (5.14). 

In order to avoid the clusters evaporating as a result of 2-body 
relaxation within the age of the Galaxy, one requires another lower 
limit on the cluster radius: 

Rc > 0.04(m*/0.01 M#3(tg/l Oloy)*/3( MC/1 06Mo)-1/3 pc (7.7) 

where me is the mass of the components. [Note that KC used the wrong 

exponent for the Mc term but this is corrected in Carr (1994).] 

CL imposed an upper limit on Rc on the grounds that they wanted 

the clusters to provide disc-heating down to at least 4 kpc. This 
condition need not applied here. However, another upper limit comes 
from requiring that the clusters do not disrupt at our own 
Galactocentric radius rO-8kpc and from eqn (7.4) this implies 

Rc < 30(r0/8kpc)*(Vh/270kms-1) (tg/l Ol*y)-‘pc (7.8) 

If this condition were not satisfied, the disc-heating constraint would 
not apply since the clusters would not survive long enough to heat the 
disc even locally. Together with eqns (6.7) and (7.7), eqn (7.8) requires 
that the mass of the cluster components satisfy 



This probably excludes their being VMO black holes but not ordinary 
stellar black holes or neutron stars, 

Two other upper limits on Rc can be imposed. Clusters at radius r 
will be destroyed by the Galactic tidal field unless.. (CL) 

Rc < {Mc/m(r)[3-(dlnm/dInr)]j1/3r (7.10) 

where m(r) is the total mass within radius r. At our own Galactocentric 
radius [where the halo dominates the mass and one is outside the halo 
core, so that (dlnm/dlnr)=l], this gives [cf. Moore & Silk (1995)j 

Rc c I OO(Mc/l 06M0)“3pc (7.11) 

Dark clusters will also be disrupted by tidal shocking as they traverse 
the Galactic disc on a timescale 

tdis * Mcl(PdRc2Vc) N Mc’/2/(G’/*Rc3/2pd) (7.12) 

where pd is the disc density; this is less than the age of the Galaxy for 

Rc < 5(tg/l o’*y)-*‘3(&/l 06Mo)1’3 Pc (7.13) 

Finally we must consider how the limits discussed in earlier 
sections are modified if the compact objects are replaced by dark 
clusters. The disc-heating limit still applies except that one may no 

longer get a high velocity tail of stars with V>iOOkms-1. CL showed 
that the condition for this is just 

Rc < 0S(Mc/l06M~) pc (7 .‘6) 

and this is incompatible with the disruption condition (7.6). The 
globular cluster disruption limit discussed in $4 must be modified if 
the radius of the dark cluster exceeds the radius of the globular cluster 
(here denoted by RGC). In this case, only the second part of the p- 
integral in eqn (3.19) applies and the lower limit in the integral 
becomes Rc rather than RGC. This means that the disruption time is 

increased by a factor (Rc/R~c)2 and eqn (4.3b) becomes 

Mmax = (3/20fi)(McVhRc2)@@LRGc3) F+RGc) (7.15) 



Thus the upper limit on the dark cluster mass increases as Rc2 if the 
dark cluster is larger than the globular cluster. 

These dynamical limits are indicated in Figure (6). This shows 
that the values of MC and Rc are constrained to a -rather narrow wedge. 
The globular cluster limit is shown with a broken line since (as 
discussed in $4) the interpretation of this limit is not completely 
clear. The imposition of condition (7.6) only shaves off a small corner 
of the permitted region and (as anticipated) the impulsive condition 
(7.1) is always satisfied. There is some uncertainty in the position of 
the dynamical friction boundary since this is sensitive to the halo core 
radius: the limit is shown for rc=2kpc and rc=8kpc since this spans the 
range of likely values. The evaporation limit (7.7) also depends on m*: 

Figure (6) assumes m* =O.OZM@ (corresponding to the brown dwarf 

scenario) and m*=O.ZM, (corresponding to the white dwarf scenario). 

8. Constraints on Intergalactic Dark Objects 

The dynamical constraints on dark intergalactic objects are much 
weaker than those for objects in halos and clusters. The most 
interesting one comes from the fact that, if there were a population of 
huge intergalactic objects, each galaxy would have a peculiar velocity 
due to its gravitational interaction with the nearest one (Carr 1978). If 
the objects were smoothly distributed, with number density density nD 

and density parameter Qg, the typical distance between them would be 

d z nD-‘13 3 ~ORD(M)-~/~(M/IO’~M,)“~ h-2’9 Mpc 
(8.1) 

where hrHo/lOO is Hubble parameter. This would also be the expected 
distance of the nearest object to a typical galaxy like our own. If the 
objects have a characteristic peculiar velocity V, the distance they 

traverse over the age of the Universe (to=1 01 Oh-’ y) would be about 

lO(V/103kms-‘)h-‘Mpc. This is well below d for M>l0’5M,, so one can 
regard the distance to the nearest dark object as being essentially 
constant in this case. Over the age of the Universe the nearest one will 
therefore induce a peculiar velocity in the Milky Way of about 

Vpec = GMtJd* = 500h’/%!D(M)*‘3(M/l 016M,)“3(~/1010h-‘y) km s-’ 

63.2) 

Since the microwave background dipole anisotropy shows that the 
peculiar velocrty or’ uur*~in-~&&~.yIv ..iS .on!v 400kms’ , one infers 



fiD < (M/5x10’5Mo)-“*(t,/lOt*h-‘y)-3’2h-”2 (8.3) 

and this is shown in Figure (7). This updates the limit first given by 
Carr (1978). Note that nothing in this argument re_quires that the dark 
object be a black hole or even compact. The same analysis would apply 
for a dark supercluster or indeed the sort of “Great Attractor” invoked 
to explain large-scale streaming motions. 

The requirement that there be at least one object of mass M 
within the current particle horizon implies a lower limit 

Rg > 3x10-8(M/l 0’6Mo)(to/1010h-‘y)-3 h 

where we have used eqn (8.1) with d=3cto=lOh-1Gpc (the current 

horizon size if the Universe has the critical density). This intersects 

eqn (8.3) at a mass 8x1020(t0/1010y)Me, so this corresponds to the 

Jargest possible dark object within the visible Universe. Note that the 
gravitational lensing limits on Rg associated with multiple-imaging o f 
distant quasars (Press & Gunn 1979) are not useful in the mass range 
considered here since the separation between the images would be too 
large for them to be identified. 

9. Conclusions 

The various dynamical limits discussed in this paper are brought 
together in Figure (7). This shows the upper limits on the fraction of 
the Galactic disc, the Galactic halo, clusters of galaxies and the 
background Universe in compact objects of mass M. In order to put the 
limits on one diagram, they are expressed in terms of the density 
parameter Qco(M) associated with the compact objects, where the disc, 

halo and cluster dark matter are assumed to have density parameters 
0.001, 0.1 and 0.2, repectively. However, this representation is merely 
used for convenience and the actual densities assumed for the different 
sites are not crucial. Anyway we cannot assume that the I i m i ts 
obtained for the Milky Way apply to all other galactic discs and halos. 
Figure (7) updates and - in some respects corrects - Figure (1) of Carr 
(I 978) and Figure (4) of Carr (1994). 

The limits on the bottom right of Figure (7) correspond to the 
requirement that there be at least one object of mass M within each 
site (i.e. within the Galactic disc, the Galactic halo, a typical cluster 
and the current particle horizon). We term these “incredulity” I im its 
since one’s belief in the compact dark object hypothesis is irrelevant 



beneath these lines. Although the incredulity limits are 
computationally trivial, they are useful since they imply absolute upper 
limits on the mass of compact objects in different locations. The 

limiting mass is 105Me for the disc, 109Me for the halo, 1012Me for 

clusters and (as discussed above) 10 20Me for the -Universe. Many other 

constraints - based on nucleosynthetic, background light, source count 
and gravitational lensing considerations - can be placed on the density 
of compact objects in different locations and these are reviewed by 
Carr (1994). In general the dynamical limits are most useful in the very 
high mass regime (where disruptive effects are important) and the very 
low mass regime (where encounter effects are important). 

Providing the dark objects are not clustered, the various I i m i ts 
already identify the most plausible candidates (Carr 1997). If the disc 
matter is real, it is probably in the form of brown dwarfs. The halo 
dark matter could consist at least partly of Population III remnants and 
white or brown dwarfs are the favoured candidates from a theoretical 
point of view, although the microlensing data currently indicate a lens 
mass in the white dwarf range (Alcock et al. 1996). The background 
dark matter must be mainly non-baryonic if inflation requires a 
critical density but one cannot exclude primordial black holes, in which 
case these objects might also provide the halo dark matter. It has been 
claimed that microlensing of distant quasars already provides evidence 
for the primordial black hole proposal (Hawkins 1993, 1996) but this 
claim is controversial. Unless one invokes an unconventional 
cosmological nucleosynthesis scenario, the cluster dark matter must 
also be mainly non-baryonic, although there would need to be some 
baryonic fraction if halos are themselves baryonic. Although the 
favoured unclustered candidates are all in the mass range for which 
dynamical effects are unimportant, in many scenarios one would expect 
the dark objects to cluster and the dynamical limits are then crucial. 
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APPENDIX A: DISRUPTION OF CLUSTERS 

We first derive eqn (3.2) using an approach similar to that of 
Gerhard & Fall (1983). If the black hole has mass M and, at closest 
approach, position p=pep and velocity V=Ve, relative to the cluster 

centre (where et, and e, are orthogonal unit vectors), then the velocity 
change induced in a star at position r relative to the cluster centre can 
be approximated by 

su su = = 2GMV-1(p*+2r*/3)-1{2p*(p*+2r*/3)-1(r.ep)ep+(r.ev)ev-r}} (Al) 

this expression covering both the p>Rc and pcRc situation. The mean- 

square value of Su for stars at a distance r from the cluster centre is 
therefore 

+up> = (8/3)(GMr/Vp*)*( 1+4r4/9p4)( 1+2r*/3p*)-4 WV 

where in averaging over the direction of r we have used the 
approximation (r.e&( r.ep) *=r*/3. To obtain the total change in the 

energy of the stars in the cluster, AE, we must integrate p<(Su)*>/2 
over all values of r and this gives 

Rc 
AE = (4/3)(GM/Vp*)* ] d3r r*p(r)(1+4r4/9p4)(1+2&3p*)-4 (A3) 

0 

For impact parameters much larger than Rc we can neglect the last two 
terms in eqn (A3). For p much smaller than Rc we can approximate 
these terms as 9p4/4r4 in the p<r<Rc part of the integral; this 
approximation fails for O<r<p but this part of the integral is anyway 
negligible. Thus in general we can approximate AE by eqn (3.2) where 

RC RC 

a2 = Rc-2 Mc-1 j dsr r*p(r) , p2 z Rc2Mc-1 J dsr r-*p(r) VW 
0 0 

For multiple disruption the rate of change of energy in the cluster 
is obtained by multiplying <(6u)*>/2 [given by eqn (A2)] by dN(p,V)/dt 
[given by eqn (3.15)] and then integrating over r, p and V. For a 
Maxwellian velocity distribution, one obtains 
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Pmax Pmax 

dE/dt = (4a1/2nG2M2)/(30Rc2)~dz z exp(-z2/4) Jdy kd3r p(r)rzH(y,z,h,r) 
Vmin Vmin Pdis Pdis 

where 

H = y-3( 1+4&9Rc4y4)( 1+2&3Rc2y2)-4 

x [I -hy2z-2( 1 +y2)-3’21 exp[h( 1 +y2)+2/2] w 

Here yap/&, z=V/o, h~G(M+Mc)/Rco2 and the (y,z) integral is carried 
over the range of values associated with region A in Figures (2). If all 
the holes have the same velocity Vo, one obtains 

Pmax Pmax 

dE/dt = (8nnG2M2)/(3VoR$) J dy jd3r p(r)r2H’(y,r) 
Pdis Pdis 

where 

H’ = y-3( 1 +4r4/9Rc4y4)( 1+2r2/3Rc2y2)-4 

x [1 -h’y2( 1 +y2)-3121 [1+2X1( 1 +y2)-“21 P) 

Here h’=G(M+Mc)/RcVo2 and the other symbols are defined as before. 
A precise evaluation of the integrals in eqns (A5) and (A6) can 

only be done numerically but various approximations permit an 
analytical evaluation. Firstly, since the minimum velocity compatible 
with multiple-disruption well exceeds V,(p), we can neglect the 
difference between V and V, and between p and pm, i.e. we can drop the 
last two terms in the expressions for H and H’. Secondly, to simplify 
the p integral, we can split it into two regimes, one with p<Rc and the 
other with p>Rc, and then use approximation (3.2). For a discrete 
velocity distribution, eqn (A6) gives eqns (3.19)-(3.21). For Maxwellian 
velocity distribution eqn (A5) gives 

dE/dt = (&2nG2M2Mc)/(3cRc2) 

Vmax Vmax - - Pmax Pmax 
L 

RC 

7 [9p2 Ipdp 

Pmax Pmax 

+ 4a2 jRc4pe3dp] 
max max 0 AC 

+I +I 
1 1 

4a2 JRc4p-3dp z exp(-z2/4) dz W) 
V V min min Pdis Pdis 



For o>Vmax, the second velocity integral is negligible and we can 
approximate the first velocity integral by putting Vmin-0. One then 

obtains eqn (3.19) but with V replaced by fia. For Vmax>o>Vmin, the 
first velocity integral is negligible and the second one can be 
approximated by putting Vmin=O and Vmax=-. This yields eqn (3.20). 

For o<Vmin, there are two exponentially damped contributions: one 

[scaling as exp(-M 2/3)] deriving from the impulsive encounters 
associated with the holes with velocity Vmin on the exponential tail of 
the Maxwell velocity distribution; the other [scaling as exp(-M)] 
deriving from the the non-impulsive encounters. The first effect 
dominates and gives eqn (3.22). 

In applying these formulae to particular astronomical situations, 
we need to estimate the parameters a, p and y. We will model open 
clusters as homogenous spheres since they are very diffuse. In this 
case there is a sharp cut-off at radius Rc and we have a=O.8, 6=1.7 and 

y-0.3. We will also model dark clusters in this way. This may not be a 
very realistic assumption but we adopt it for simplicity and also 
because it is not clear what is better. We will model globular clusters 

as Plummer spheres with total mass MC and length-scale E. In this case 

the density profile is 

p(r) = 3Mc(4&)-1 [I +(r/&)2]-5/2 WI 

where R,= 1 .3~ is interpreted as the half-mass radius since the sphere 

extends to infinity. This implies a=3, 6=1 and y=(3x/64)=0.15. We will 
model galaxies as isothermal spheres with a constant density core of 
radius rc and a cut off at some radius Rc : 

P(r) = Mc(4xRc)-1 (rz+rcz)-16(Rc-r) w 

where 8 is the Heaviside function. The cut-off must be specified since 
the mass increases indefinitely with radius. In this case, o( =0.6, 
@ =(Rc/rc)l/2=2-3 and y-3/4. Eqn (A9) is supposed to specify the density 
distribution of all the matter in galaxies (including their dark halos) 
and not just the visible stars. 
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APPENDIX B: DYNAMICAL FRICTION FROM SPHEROID AND HALO 

Our aim here is to evaluate eqn (5.5) for the different sources of 
dynamical drag. Carr & Lacey (1987) have analysed the effect of 
spheroid stars on halo objects and, for completeness, we first repeat 
their analysis here. We introduce dimensionless variables 

x=r/rl , p=ps/pl , iii=ml(4npl rl3), T=vl(4rcGpl rl2)1/2, 7 =t(4xGpl)1/2 

w > 
Eqn (5.1) implies for {x<l, x>l) 

5 3 {x-9/5, x-3) (82) 

“m = {(5/6)x6/5, 516 + Inx} (83) 

TC2 = %(x)/x = {(5/6)x “5, (5+6lnx)/(6x)} W) 

1 + (dln&/dlnx) = {I l/l 0, (11+6lnx)/2(5+6lnx)} (B5) 

InA = ln(&b) = {(6/5)lnx - ln(6k5), In[l+(6/5)lnx] - ln(6b/5)} w 

The 1 -dimensional velocity dispersion is determined from 

Z(x)2 = i(x)-1J~~~v)y-2”m(y)dy 
X 

and this gives 

W) 

Z(x)2 = {(25/48)x1 /5-x9/5/4, Inx/(4x) + 13/(48x)} WI 

Q(fi G) = {[20/(25-l 2x8/5)11/2, 2[(5+6lnx)/(l3+12lnx)]l~2} 

= {2/G, fi} for {x<<l, x>>l} WV 

The last two equations are slightly innacurate because they neglect the 
different density distribution outside the radius r2 where the halo 
dominates the spheroid but the error is small. Eqn (5.5a) becomes 

drldt =-q lnA(x) {(12& 1 ~S)A(~/&)X-~ l/1 O, 

(12&)A(@x- l/2( 11+6lnx)-1(5+6lnx)-l/2} (BlO) 



rl= G1/2M/(&pl1/2r12) = 2x1 O-6( M/l 06M o) PC y-l WV 

where A(x) is defined by eqn (5.5~) and we use 4np1r13=1.2~101OMe. 

For present purposes we neglect the dependence of lnll on x and write 

InA = - In[3M/(lOxpl rl3] = 9 - In(MI106Mo) w 2) 

so this term is about 9. We also use A(2/fi)=0.3 and A(fl)=0.7. In a 
time t compact objects of mass M will therefore drift into the Galactic 
nucleus from a Galactocentric radius 

t 

(6.871 t) 1 o/21 rl 1 l/21 (rdf < ri) (E313a) 

rdf = 
(llnt)2/3rl 1/3[1+(6/1 l)ln(rdf/rl)]-2’3[l+(6/5)ln(rdf/rl)]’1/3 

(rdf > ri ) (Bl3b) 

where we have used eqn (5.6) in determining the numerical coefficients 
and we regard the dependencies on rdf on the right-hand-side as weak. 

Inserting the values for n, t and rl then gives eqns (5.7a) and (5.7b). 
We now carry out a similar analysis for the “halo” drag. We 

introduce dimensionless variables 

x=r/rc, F=ph/pc, &m/(4zpcrc3), ?&/(4JcGpcrc2)1/2, “i =t(4xGpc)l/2 

w 4) 
noting that these are different from the ones used in the spheroid case. 
Let us first neglect the effect of the extra mass within the spheroid. 
Eqn (5.2) then implies for {x<l, x>l} 

i; = { 1, x-2} , w 5) 
“m = {x3/3, x-213) P’6) 

T&2 = G(x)/x = {x2/3, 1-2/(3x)} (B’7) 

1 + (dln?c/dlnx) = (2, (3x-1)/(3x-2)} P’ 8) 

Inh = (3lnx - ln(3&), ln(x-2/3) - In&} P’9) 

and eqn (B7) gives 
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r;;(x)2 = {4/9-x2/6, (1/2)-2/(9x)} VW 

T&/T 6) = (d3 XlTFg 43(3x-2)/(9x-4)} . 

= {GE x, 1) for {x<<l, x>>l} W’ > 

Eqn (5.5a) becomes 

dr/dt =-n lnA(x){A(Gx)(34%2)x-2) A(l)x-1(1-1/3~)-~ (1-2/3x)-l/2} 

W2) 

J-l = G1/2Ml(&pc l/21,2) =I.2x10-6(rc/2kpc)-l(M/l06Me) PC PC y-‘(B23) 

where we use 4zpcrc 3=1.6x1 OlO(rc/2kpc)Me. As before we neglect the 

dependence of hA on x and write 

InA = - ln[{3,1 }M/(4rpcrc3] = (9,lO) - In(M/l06Me) + In (rcI2kpc) (B24) 

so this term is always about 10. We also use A(l)=0.3. In a time t 
compact objects of mass M will therefore drift into the Galactic 
nucleus from a Galactocentric radius 

(70A(d3/8x)n rc2t) “3 (rdf < rc) (B25a) 

rdf = 

(6qrct)li2[1 -(rc/3rdf)]-1/2[i -(2rc/3rdf)]-1’4 (rdf > rc) (B25b) 

where we have used eqn (5.6) and we regard the dependency on rdf on 
the right-hand-side as weak. Evaluating the terms in eqn (B25b) yields 
eqn (5.7~). 

We now consider how this analysis can be modified to allow for 
the excess mass from the spheroid. The problem is that, although the 
density is dominated by the halo beyond r2, the mass is dominated by 
the spheroid up to the radius r3 given by the eqn (5.4). Therefore, as 

jusified in 95, for r2<rcr3 we must use the halo expression for the p 
term in eqn (5.5a) but the spheroid expression for all the other terms. 
Instead of the first expression in eqn (B22), we then obtain 



dr/dt =~IJ hA(x) (12fi)B(fi)(l 1+6lnx)-1(5+6lnx)-l/2 

x {O.O9(rc/2kpc) x -2 5/2, 0.6x1/2} for {r2<r<rc,rc<r<r3) (827) 

This shows that the drift timescale rl(dr/dt) is a decreasing function 
of r for rc>r>r2 and so, as discussed in 95, the time to reach the origin 
is the drift timescale at r2 for some range rprdf>rq. This means that 
the function rdf(M) jumps discontinuously from r2 to the value rq 
indicated by eqn (5.10). 



FIGURE CAPTIONS 
Figure (1). The constraints on the fraction of the Galactic disc 
(broken line) and the Galactic halo (solid line) in compact objects of 
mass M. The shaded regions are excluded by collisional disruption, by 
upper limits on the frequency of meteors, firebatls and interstellar 
comets, and by the number of terrestrial impact craters. The limits are 

mainly based on updated versions of the calculations of Hills (1986). 

Figure (2). The regimes of velocity V and impact parameter p for 
which compact objects of mass M disrupt a cluster of mass Mc and 
velocity dispersion Vc through (A) multiple encounters and (B) one-off 

disruption. V necessarily exceeds the escape velocity, so one must be 
above the shaded region, but there is a small region (C) in which the 
impulse approximation fails (so that disruption is weak). (a) shows the 
M>Mc case; (b) the M<Mc case. 

Figure (3). The constraint on the density pco of compact objects of 
mass M associated with the disruption of clusters mass Mc, radius Rc, 

internal velocity dispersion Vc and lifetime tL. The shaded region is 

excluded by multiple-encounter disruption for M<Mc(V/Vc) and by 

single-encounter disruption for Mc(V/Vc)3>M>Mc(VIVc). The upper I i m it 

cuts off for M>Mc(V/Vc)l/3 since the impulse approximation then fails. 

V is the velocity of the compact objects, interpreted as the 3 - 
dimensional velocity dispersion for a Maxwellian distribution. One has 
an interesting constraint providing the density at which the Ii mit 
bottoms out is less than the actual density. 

Figure (4). The fraction of the Galactic disc, the Galactic halo and 
clusters of galaxies in compact objects of mass M. The shaded regions 
are excluded by the disruption of binaries, open clusters, globular 
clusters and galaxies. 

Figure (5). (a) The dependence on Galactocentric distance r of the 

timescale tdr on which halo objects are dragged into the Galactic 
nucleus through dynamical friction. The different regimes correspond 
to the drag being dominated by the inner spheroid, the outer spheroid 
and the outer halo. (b) The M-dependence of the Galactocentric radius 
rdf at which dynamical friction can drag halo objects into the nucleus 

within the age of the Universe. (c) The constraint on the fraction f, of 
the halo in compact objects of mass M, assuming no slingshot 
mechanism operates. The disc-heating limit is also shown (dotted). 



Figure (6). The domain of mass Mc and radius Rc which could be 

occupied by dark clusters. The boundaries are associated both with 
disruptive effects which would destroy the clusters within the age of 
the Universe (collisions, the Galactic tidal field, d&c-shocking, 2-body 
relaxation) and dynamical consequences which would be inconsistent 
with observation (dynamical friction, globular cluster disruption, disc- 
heating). The globular cluster limit is shown broken because it is not 
completely secure. The dynamical friction limit depends on the halo 
core radius and is shown for values of 2kpc and 8kpc. The 2-body 
relaxation limit depends on the mass of the cluster components and is 
shown for values of O.OlMo and 0.5Me. 

Figure (7). The dynamical constraints on the density parameter & 
for compact objects of mass M in the Galactic disc, the Galactic halo, 
clusters of galaxies and the intergalactic medium. The total density 
parameter associated with each of these sites is taken to be 0.001, 0.1, 
0.2 and 1, respectively. This figure brings together the constraints in 
Figures 1, 4 and 5, as well as the large-scale streaming and incredulity 
limits. 

Table (1). Possible locations of dark baryons and formation epochs of 
compact objects. 

Table (2). Parameters assumed and constraints derived for the 
disruption of globular clusters (GC) by halo objects, open clusters (OC) 
and binaries (B) by disc objects, and galaxies (G) by cluster objects. 
The maximum density of the objects, the maximum mass for which they 
can contain all the dark mass and the minimum mass for which the 
limits can be obviated are indicated. The constraints assume the values 
for a, p and y appropriate in each context. 
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